## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval=FALSE-------------------------------------------------------------- # # Install from CRAN # install.packages('toolStability', dependencies=TRUE) # # # Install development version from Github # devtools::install_github("Illustratien/toolStability") # ## ----------------------------------------------------------------------------- library(toolStability) ## ----plot, fig.cap = 'Example of environmental effects on wheat yield.', echo = FALSE, fig.height=4, fig.width=8, message=FALSE---- ggplot2::ggplot(Data,ggplot2::aes(x=Sites,y=Yield,col=Genotype))+ ggplot2::geom_boxplot()+ ggplot2::facet_grid(Sowing~Nitrogen,labeller =ggplot2::label_both)+ ggplot2::ylab(bquote('Wheat yield (kg' %.%'ha'^'-1'*')'))+ ggplot2::theme_test() ## ----------------------------------------------------------------------------- rm(list=ls()) library(toolStability) ### load data data("Data") ### check the structure of sample dataset ### be sure that the trait is numeric!!! dplyr::glimpse(Data) ### calculate ecovalence for all genotypes single.index.ecovalence <- ecovalence(data = Data, trait = 'Yield', genotype = 'Genotype', environment = 'Environment', unit.correct = FALSE, modify = FALSE) ### check the structure of result dplyr::glimpse(single.index.ecovalence) ### calculate modified ecovalence for all genotypes single.index.ecovalence.modified <- ecovalence(data = Data, trait = 'Yield', genotype = 'Genotype', environment = 'Environment', unit.correct = FALSE, modify = TRUE) ### check the structure of result dplyr::glimpse(single.index.ecovalence.modified) ## ----------------------------------------------------------------------------- ### calculate all stability indices for all genotypes summary.table <- table_stability(data = Data, trait = 'Yield', genotype = 'Genotype', environment = 'Environment', lambda = median(Data$Yield), normalize = FALSE, unit.correct = FALSE) #### warning message means your data structure is not distributed as normal distribution #### check the structure of result dplyr::glimpse(summary.table) ### calculate all stability indices for all genotypes normalized.summary.table <- table_stability(data = Data, trait = 'Yield', genotype = 'Genotype', environment = 'Environment', lambda = median(Data$Yield), normalize = TRUE, unit.correct = FALSE) #### warning message means your data structure is not distributed as normal distribution #### check the structure of result dplyr::glimpse(normalized.summary.table) ### compare the result from summary.table and normalized.summary.table ### calculate the stability indices only based only on CO2 and Nitrogen environments summary.table2 <- table_stability(data = Data, trait = 'Yield', genotype = 'Genotype', environment = c('CO2','Nitrogen'), lambda = median(Data$Yield), normalize = FALSE, unit.correct = FALSE) #### check the structure of result dplyr::glimpse(summary.table2) ### compare the result from summary.table and summary.table2 ### see how the choice of environments affect the data