## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("tidyAML") ## ----warning=FALSE, message=FALSE, eval=FALSE--------------------------------- # # install.packages("devtools") # devtools::install_github("spsanderson/tidyAML") ## ----example------------------------------------------------------------------ library(tidyAML) ## ----------------------------------------------------------------------------- fast_regression_parsnip_spec_tbl(.parsnip_fns = "linear_reg") fast_regression_parsnip_spec_tbl(.parsnip_eng = c("lm","glm")) fast_regression_parsnip_spec_tbl(.parsnip_eng = c("lm","glm","gee"), .parsnip_fns = "linear_reg") ## ----------------------------------------------------------------------------- class(fast_regression_parsnip_spec_tbl()) ## ----------------------------------------------------------------------------- create_model_spec( .parsnip_eng = list("lm","glm","glmnet","cubist"), .parsnip_fns = list( "linear_reg", "linear_reg", "linear_reg", "cubist_rules" ) ) create_model_spec( .parsnip_eng = list("lm","glm","glmnet","cubist"), .parsnip_fns = list( "linear_reg", "linear_reg", "linear_reg", "cubist_rules" ), .return_tibble = FALSE ) ## ----warning=FALSE, message=FALSE--------------------------------------------- library(recipes) library(dplyr) rec_obj <- recipe(mpg ~ ., data = mtcars) frt_tbl <- fast_regression( .data = mtcars, .rec_obj = rec_obj, .parsnip_eng = c("lm","glm"), .parsnip_fns = "linear_reg" ) glimpse(frt_tbl) ## ----------------------------------------------------------------------------- frt_tbl$pred_wflw