## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, # inches fig.height = 5, # inches dpi = 150, out.width = "100%", # scale image to column width fig.align = "center" ) ## ----setup-------------------------------------------------------------------- library(tican) ## ----include=FALSE------------------------------------------------------------ set.seed(123) time <- seq(0, 50, by = 0.5) # simulating data using gamma gamma_tic <- function(time, amplitude, arrival_time, alpha, beta, plateau) { intensity <- numeric(length(time)) for (i in seq_along(time)) { t <- time[i] - arrival_time if (t <= 0) { intensity[i] <- plateau } else { gamma_component <- amplitude * (t^alpha) * exp(-t/beta) intensity[i] <- plateau + gamma_component } } return(intensity) } # simulating data for 'regionA' regionA_intensity <- gamma_tic( time = time, amplitude = 20, arrival_time = 5, alpha = 2, beta = 3, plateau = 0 ) + rnorm(length(time), 0, 2.5) # simulating data for 'regionB' regionB_intensity <- gamma_tic( time = time, amplitude = 25, arrival_time = 3, alpha = 1.5, beta = 2, plateau = 0 ) + rnorm(length(time), 0, 1) example_data <- data.frame( time = time, regionA_intensity = regionA_intensity, regionB_intensity = regionB_intensity ) ## ----------------------------------------------------------------------------- # Showing structure of example dataframe head(example_data,5) ## ----------------------------------------------------------------------------- # Analysing using defaults result <- tic_analyse(example_data,"time","regionA_intensity") print(result) ## ----------------------------------------------------------------------------- result <- tic_analyse(example_data,"time","regionA_intensity", peakproportion = 0.9, #to calculate time to 90 percent peak AUCmax = 30) print(result) ## ----------------------------------------------------------------------------- result <- tic_analyse(example_data,"time","regionA_intensity", calc_wir = TRUE, calc_wor = TRUE ) print(result) ## ----------------------------------------------------------------------------- result <- tic_analyse(example_data,"time","regionA_intensity", loess.span = 0.15, # altering from default of 0.1 degree = 1) # adding a loess() argument print(result) ## ----------------------------------------------------------------------------- results <- data.frame() #making empty dataframe to hold results for(region in c("regionA_intensity","regionB_intensity")){ resulttemp <- tic_analyse(example_data,"time",region) #storing results resulttemp$Region <- region # adding column for region results <- rbind(results, resulttemp) # combining results for different regions } print(results) ## ----------------------------------------------------------------------------- example_data2 <- example_data #creating a second dataframe results <- data.frame() #making empty dataframe to hold results for(df in c("example_data","example_data2")){ resulttemp <- tic_analyse(get(df), # get() to get the dataframe object "time","regionA_intensity") resulttemp$data <- df # adding column for which dataframe results are from results <- rbind(results, resulttemp) # combining results for different dataframes } print(results)