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add_candidates Add model definitions to a data stack

Description

add_candidates() collates the assessment set predictions and additional attributes from the sup-
plied model definition (i.e. set of "candidates") to a data stack.

Behind the scenes, data stack objects are just tibble::tbl_dfs, where the first column gives the true
response values, and the remaining columns give the assessment set predictions for each candidate.
In the regression setting, there’s only one column per ensemble member. In classification settings,
there are as many columns per candidate ensemble member as there are levels of the outcome
variable.

To initialize a data stack, use the stacks() function. Model definitions are appended to a data
stack iteratively using several calls to add_candidates(). Data stacks are evaluated using the
blend_predictions() function.
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Usage

add_candidates(
data_stack,
candidates,
name = deparse(substitute(candidates)),
...

)

Arguments

data_stack A data_stack object.

candidates A (set of) model definition(s) defining candidate model stack members. Should
inherit from tune_results or workflow_set.

• tune_results: An object outputted from tune::tune_grid(), tune::tune_bayes(),
or tune::fit_resamples().

• workflow_set: An object outputted from workflowsets::workflow_map().
This approach allows for supplying multiple sets of candidate members
with only one call to add_candidates. See the "Stacking With Workflow
Sets" article on the package website for example code!

Regardless, these results must have been fitted with the control settings save_pred = TRUE, save_workflow = TRUE—see
the control_stack_grid(), control_stack_bayes(), and control_stack_resamples()
documentation for helper functions.

name The label for the model definition—defaults to the name of the candidates
object. Ignored if candidates inherits from workflow_set.

... Additional arguments. Currently ignored.

Value

A data_stack object–see stacks() for more details!

Example Data

This package provides some resampling objects and datasets for use in examples and vignettes
derived from a study on 1212 red-eyed tree frog embryos!

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

reg_folds and class_folds are rset cross-fold validation objects from rsample, splitting the
training data into for the regression and classification model objects, respectively. tree_frogs_reg_test
and tree_frogs_class_test are the analogous testing sets.

https://stacks.tidymodels.org/
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reg_res_lr, reg_res_svm, and reg_res_sp contain regression tuning results for a linear regres-
sion, support vector machine, and spline model, respectively, fitting latency (i.e. how long the
embryos took to hatch in response to the jiggle) in the tree_frogs data, using most all of the other
variables as predictors. Note that the data underlying these models is filtered to include data only
from embryos that hatched in response to the stimulus.

class_res_rf and class_res_nn contain multiclass classification tuning results for a random for-
est and neural network classification model, respectively, fitting reflex (a measure of ear function)
in the data using most all of the other variables as predictors.

log_res_rf and log_res_nn, contain binary classification tuning results for a random forest and
neural network classification model, respectively, fitting hatched (whether or not the embryos
hatched in response to the stimulus) using most all of the other variables as predictors.

See ?example_data to learn more about these objects, as well as browse the source code that
generated them.

See Also

Other core verbs: blend_predictions(), fit_members(), stacks()

Examples

# see the "Example Data" section above for
# clarification on the objects used in these examples!

# put together a data stack using
# tuning results for regression models
reg_st <-

stacks() |>
add_candidates(reg_res_lr) |>
add_candidates(reg_res_svm) |>
add_candidates(reg_res_sp)

reg_st

# do the same with multinomial classification models
class_st <-

stacks() |>
add_candidates(class_res_nn) |>
add_candidates(class_res_rf)

class_st

# ...or binomial classification models
log_st <-

stacks() |>
add_candidates(log_res_nn) |>
add_candidates(log_res_rf)

log_st

# use custom names for each model:
log_st2 <-
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stacks() |>
add_candidates(log_res_nn, name = "neural_network") |>
add_candidates(log_res_rf, name = "random_forest")

log_st2

# these objects would likely then be
# passed to blend_predictions():
log_st2 |> blend_predictions()

augment.model_stack Augment a model stack

Description

Augment a model stack

Usage

## S3 method for class 'model_stack'
augment(x, new_data, ...)

Arguments

x A fitted model stack; see fit_members().

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to predict.model_stack. In particular, see type
and members.

See Also

The collect_parameters() function is analogous to a tidy() method for model stacks.

autoplot.linear_stack Plot results of a stacked ensemble model.

Description

Plot results of a stacked ensemble model.

Usage

## S3 method for class 'linear_stack'
autoplot(object, type = "performance", n = Inf, ...)
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Arguments

object A linear_stack object outputted from blend_predictions() or fit_members().

type A single character string for plot type with values "performance", "members",
or "weights".

n An integer for how many members weights to plot when type = "weights".
With multi-class data, this is the total number of weights across classes; other-
wise this is equal to the number of members.

... Not currently used.

Details

A "performance" plot shows the relationship between the lasso penalty and the resampled perfor-
mance metrics. The latter includes the average number of ensemble members. This plot can be
helpful for understanding what penalty values are reasonable.

A "members" plot shows the relationship between the average number of ensemble members and
the performance metrics. Each point is for a different penalty value.

Neither of the "performance" or "members" plots are helpful when a single penalty is used.

A "weights" plot shows the blending weights for the top ensemble members. The results are for the
final penalty value used to fit the ensemble.

Value

A ggplot object.

axe_model_stack Axing a model_stack.

Description

Axing a model_stack.

Remove the call.

Remove controls used for training.

Remove the training data.

Remove environments.

Remove fitted values.

Usage

## S3 method for class 'model_stack'
axe_call(x, verbose = FALSE, ...)

## S3 method for class 'model_stack'
axe_ctrl(x, verbose = FALSE, ...)
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## S3 method for class 'model_stack'
axe_data(x, verbose = FALSE, ...)

## S3 method for class 'model_stack'
axe_env(x, verbose = FALSE, ...)

## S3 method for class 'model_stack'
axe_fitted(x, verbose = FALSE, ...)

Arguments

x A model object

verbose Print information each time an axe method is executed. Notes how much mem-
ory is released and what functions are disabled. Default is FALSE.

... Additional arguments. Currently ignored.

Value

Axed model_stack object.

Examples

# build a regression model stack
st <-

stacks() |>
add_candidates(reg_res_lr) |>
add_candidates(reg_res_sp) |>
blend_predictions() |>
fit_members()

# remove any of the "butcherable"
# elements individually
axe_call(st)
axe_ctrl(st)
axe_data(st)
axe_fitted(st)
axe_env(st)

# or do it all at once!
butchered_st <- butcher(st, verbose = TRUE)

format(object.size(st))
format(object.size(butchered_st))
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blend_predictions Determine stacking coefficients from a data stack

Description

Evaluates a data stack by fitting a regularized model on the assessment predictions from each can-
didate member to predict the true outcome.

This process determines the "stacking coefficients" of the model stack. The stacking coefficients
are used to weight the predictions from each candidate (represented by a unique column in the data
stack), and are given by the betas of a LASSO model fitting the true outcome with the predictions
given in the remaining columns of the data stack.

Candidates with non-zero stacking coefficients are model stack members, and need to be trained
on the full training set (rather than just the assessment set) with fit_members(). This function is
typically used after a number of calls to add_candidates().

Usage

blend_predictions(
data_stack,
penalty = 10^(-6:-1),
mixture = 1,
non_negative = TRUE,
metric = NULL,
control = tune::control_grid(),
times = 25,
...

)

Arguments

data_stack A data_stack object

penalty A numeric vector of proposed values for total amount of regularization used
in member weighting. Higher penalties will generally result in fewer members
being included in the resulting model stack, and vice versa. The package will
tune over a grid formed from the cross product of the penalty and mixture
arguments.

mixture A number between zero and one (inclusive) giving the proportion of L1 regu-
larization (i.e. lasso) in the model. mixture = 1 indicates a pure lasso model,
mixture = 0 indicates ridge regression, and values in (0, 1) indicate an elastic
net. The package will tune over a grid formed from the cross product of the
penalty and mixture arguments.

non_negative A logical giving whether to restrict stacking coefficients to non-negative values.
If TRUE (default), 0 is passed as the lower.limits argument to glmnet::glmnet()
in fitting the model on the data stack. Otherwise, -Inf.
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metric A call to yardstick::metric_set(). The metric(s) to use in tuning the lasso
penalty on the stacking coefficients. Default values are determined by tune::tune_grid()
from the outcome class.

control An object inheriting from control_grid to be passed to the model determining
stacking coefficients. See tune::control_grid() documentation for details
on possible values. Note that any extract entry will be overwritten internally.

times Number of bootstrap samples tuned over by the model that determines stacking
coefficients. See rsample::bootstraps() to learn more.

... Additional arguments. Currently ignored.

Details

Note that a regularized linear model is one of many possible learning algorithms that could be used
to fit a stacked ensemble model. For implementations of additional ensemble learning algorithms,
see h2o::h2o.stackedEnsemble() and SuperLearner::SuperLearner().

Value

A model_stack object—while model_stacks largely contain the same elements as data_stacks,
the primary data objects shift from the assessment set predictions to the member models.

Example Data

This package provides some resampling objects and datasets for use in examples and vignettes
derived from a study on 1212 red-eyed tree frog embryos!

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

reg_folds and class_folds are rset cross-fold validation objects from rsample, splitting the
training data into for the regression and classification model objects, respectively. tree_frogs_reg_test
and tree_frogs_class_test are the analogous testing sets.

reg_res_lr, reg_res_svm, and reg_res_sp contain regression tuning results for a linear regres-
sion, support vector machine, and spline model, respectively, fitting latency (i.e. how long the
embryos took to hatch in response to the jiggle) in the tree_frogs data, using most all of the other
variables as predictors. Note that the data underlying these models is filtered to include data only
from embryos that hatched in response to the stimulus.

class_res_rf and class_res_nn contain multiclass classification tuning results for a random for-
est and neural network classification model, respectively, fitting reflex (a measure of ear function)
in the data using most all of the other variables as predictors.
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log_res_rf and log_res_nn, contain binary classification tuning results for a random forest and
neural network classification model, respectively, fitting hatched (whether or not the embryos
hatched in response to the stimulus) using most all of the other variables as predictors.

See ?example_data to learn more about these objects, as well as browse the source code that
generated them.

See Also

Other core verbs: add_candidates(), fit_members(), stacks()

Examples

# see the "Example Data" section above for
# clarification on the objects used in these examples!

# put together a data stack
reg_st <-

stacks() |>
add_candidates(reg_res_lr) |>
add_candidates(reg_res_svm) |>
add_candidates(reg_res_sp)

reg_st

# evaluate the data stack
reg_st |>

blend_predictions()

# include fewer models by proposing higher penalties
reg_st |>

blend_predictions(penalty = c(.5, 1))

# allow for negative stacking coefficients
# with the non_negative argument
reg_st |>

blend_predictions(non_negative = FALSE)

# use a custom metric in tuning the lasso penalty
library(yardstick)
reg_st |>

blend_predictions(metric = metric_set(rmse))

# pass control options for stack blending
reg_st |>

blend_predictions(
control = tune::control_grid(allow_par = TRUE)

)

# to speed up the stacking process for preliminary
# results, bump down the `times` argument:
reg_st |>

blend_predictions(times = 5)
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# the process looks the same with
# multinomial classification models
class_st <-

stacks() |>
add_candidates(class_res_nn) |>
add_candidates(class_res_rf) |>
blend_predictions()

class_st

# ...or binomial classification models
log_st <-

stacks() |>
add_candidates(log_res_nn) |>
add_candidates(log_res_rf) |>
blend_predictions()

log_st

collect_parameters Collect candidate parameters and stacking coefficients

Description

A function to help situate candidates within a stack. Takes in a data stack or model stack and
candidate name and returns a tibble mapping the candidate/member names to their hyperparameters
(and, if a model stack, to their stacking coefficients as well).

Usage

collect_parameters(stack, candidates, ...)

## Default S3 method:
collect_parameters(stack, candidates, ...)

## S3 method for class 'data_stack'
collect_parameters(stack, candidates, ...)

## S3 method for class 'model_stack'
collect_parameters(stack, candidates, ...)

Arguments

stack A data_stack or model_stack object.
candidates The name of the candidates to collect parameters on. This will either be the

name argument supplied to add_candidates() or, if not supplied, the name of
the object supplied to the candidates argument in add_candidates().

... Additional arguments. Currently ignored.
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Value

A tibble::tbl_df with information on member names and hyperparameters.

Example Data

This package provides some resampling objects and datasets for use in examples and vignettes
derived from a study on 1212 red-eyed tree frog embryos!

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

reg_folds and class_folds are rset cross-fold validation objects from rsample, splitting the
training data into for the regression and classification model objects, respectively. tree_frogs_reg_test
and tree_frogs_class_test are the analogous testing sets.

reg_res_lr, reg_res_svm, and reg_res_sp contain regression tuning results for a linear regres-
sion, support vector machine, and spline model, respectively, fitting latency (i.e. how long the
embryos took to hatch in response to the jiggle) in the tree_frogs data, using most all of the other
variables as predictors. Note that the data underlying these models is filtered to include data only
from embryos that hatched in response to the stimulus.

class_res_rf and class_res_nn contain multiclass classification tuning results for a random for-
est and neural network classification model, respectively, fitting reflex (a measure of ear function)
in the data using most all of the other variables as predictors.

log_res_rf and log_res_nn, contain binary classification tuning results for a random forest and
neural network classification model, respectively, fitting hatched (whether or not the embryos
hatched in response to the stimulus) using most all of the other variables as predictors.

See ?example_data to learn more about these objects, as well as browse the source code that
generated them.

Examples

# see the "Example Data" section above for
# clarification on the objects used in these examples!

# put together a data stack using
# tuning results for regression models
reg_st <-

stacks() |>
add_candidates(reg_res_lr) |>
add_candidates(reg_res_svm) |>
add_candidates(reg_res_sp, "spline")

reg_st
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# check out the hyperparameters for some of the candidates
collect_parameters(reg_st, "reg_res_svm")

collect_parameters(reg_st, "spline")

# blend the data stack to view the hyperparameters
# along with the stacking coefficients!
collect_parameters(

reg_st |> blend_predictions(),
"spline"

)

control_stack Control wrappers

Description

Supply these light wrappers as the control argument in a tune::tune_grid(), tune::tune_bayes(),
or tune::fit_resamples() call to return the needed elements for use in a data stack. These func-
tions will return the appropriate control grid to ensure that assessment set predictions and informa-
tion on model specifications and preprocessors, is supplied in the resampling results object!

To integrate stack settings with your existing control settings, note that these functions just call the
appropriate tune::control_* function with the arguments save_pred = TRUE, save_workflow = TRUE.

Usage

control_stack_grid()

control_stack_resamples()

control_stack_bayes()

Value

A tune::control_grid, tune::control_bayes, or tune::control_resamples object.

See Also

See example_data for examples of these functions used in context.

Examples

library(tune)

# these are the same!
control_stack_grid()
control_grid(save_pred = TRUE, save_workflow = TRUE)
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example_data Example Objects

Description

stacks provides some resampling objects and datasets for use in examples and vignettes derived
from a study on 1212 red-eyed tree frog embryos!

Usage

reg_res_svm

reg_res_sp

reg_res_lr

reg_folds

class_res_nn

class_res_rf

class_folds

log_res_nn

log_res_rf

Format

An object of class tune_results (inherits from tbl_df, tbl, data.frame) with 5 rows and 5
columns.

An object of class tune_results (inherits from tbl_df, tbl, data.frame) with 5 rows and 5
columns.

An object of class resample_results (inherits from tune_results, tbl_df, tbl, data.frame)
with 5 rows and 5 columns.

An object of class vfold_cv (inherits from rset, tbl_df, tbl, data.frame) with 5 rows and 2
columns.

An object of class resample_results (inherits from tune_results, tbl_df, tbl, data.frame)
with 5 rows and 5 columns.

An object of class tune_results (inherits from tbl_df, tbl, data.frame) with 5 rows and 5
columns.

An object of class vfold_cv (inherits from rset, tbl_df, tbl, data.frame) with 5 rows and 2
columns.
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An object of class resample_results (inherits from tune_results, tbl_df, tbl, data.frame)
with 5 rows and 5 columns.

An object of class tune_results (inherits from tbl_df, tbl, data.frame) with 5 rows and 5
columns.

Details

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

reg_folds and class_folds are rset cross-fold validation objects from rsample, splitting the
training data into for the regression and classification model objects, respectively. tree_frogs_reg_test
and tree_frogs_class_test are the analogous testing sets.

reg_res_lr, reg_res_svm, and reg_res_sp contain regression tuning results for a linear regres-
sion, support vector machine, and spline model, respectively, fitting latency (i.e. how long the
embryos took to hatch in response to the jiggle) in the tree_frogs data, using most all of the other
variables as predictors. Note that the data underlying these models is filtered to include data only
from embryos that hatched in response to the stimulus.

class_res_rf and class_res_nn contain multiclass classification tuning results for a random for-
est and neural network classification model, respectively, fitting reflex (a measure of ear function)
in the data using most all of the other variables as predictors.

log_res_rf and log_res_nn, contain binary classification tuning results for a random forest and
neural network classification model, respectively, fitting hatched (whether or not the embryos
hatched in response to the stimulus) using most all of the other variables as predictors.

The source code for generating these objects is given below.

# setup: packages, data, resample, basic recipe ------------------------
library(stacks)
library(tune)
library(rsample)
library(parsnip)
library(workflows)
library(recipes)
library(yardstick)
library(workflowsets)

set.seed(1)

ctrl_grid <-
tune::control_grid(
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save_pred = TRUE,
save_workflow = TRUE

)

ctrl_res <-
tune::control_resamples(
save_pred = TRUE,
save_workflow = TRUE

)

# for regression, predict latency to hatch (excluding NAs)
tree_frogs_reg <-
tree_frogs |>
filter(!is.na(latency)) |>
select(-clutch, -hatched)

set.seed(1)
tree_frogs_reg_split <- rsample::initial_split(tree_frogs_reg)

set.seed(1)
tree_frogs_reg_train <- rsample::training(tree_frogs_reg_split)

set.seed(1)
tree_frogs_reg_test <- rsample::testing(tree_frogs_reg_split)

set.seed(1)
reg_folds <- rsample::vfold_cv(tree_frogs_reg_train, v = 5)

tree_frogs_reg_rec <-
recipes::recipe(latency ~ ., data = tree_frogs_reg_train) |>
recipes::step_dummy(recipes::all_nominal()) |>
recipes::step_zv(recipes::all_predictors())

metric <- yardstick::metric_set(yardstick::rmse)

# linear regression ---------------------------------------
lin_reg_spec <-
parsnip::linear_reg() |>
parsnip::set_engine("lm")

reg_wf_lr <-
workflows::workflow() |>
workflows::add_model(lin_reg_spec) |>
workflows::add_recipe(tree_frogs_reg_rec)

set.seed(1)
reg_res_lr <-
tune::fit_resamples(
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object = reg_wf_lr,
resamples = reg_folds,
metrics = metric,
control = ctrl_res

)

# SVM regression ----------------------------------
svm_spec <-
parsnip::svm_rbf(
cost = tune::tune(),
rbf_sigma = tune::tune()

) |>
parsnip::set_engine("kernlab") |>
parsnip::set_mode("regression")

reg_wf_svm <-
workflows::workflow() |>
workflows::add_model(svm_spec) |>
workflows::add_recipe(tree_frogs_reg_rec)

set.seed(1)
reg_res_svm <-
tune::tune_grid(
object = reg_wf_svm,
resamples = reg_folds,
grid = 5,
control = ctrl_grid

)

# spline regression ---------------------------------------
spline_rec <-
tree_frogs_reg_rec |>
recipes::step_ns(age, deg_free = tune::tune("age"))

reg_wf_sp <-
workflows::workflow() |>
workflows::add_model(lin_reg_spec) |>
workflows::add_recipe(spline_rec)

set.seed(1)
reg_res_sp <-
tune::tune_grid(
object = reg_wf_sp,
resamples = reg_folds,
metrics = metric,
control = ctrl_grid

)
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# classification - preliminaries -----------------------------------
tree_frogs_class <-
tree_frogs |>
dplyr::select(-c(clutch, latency))

set.seed(1)
tree_frogs_class_split <- rsample::initial_split(tree_frogs_class)

set.seed(1)
tree_frogs_class_train <- rsample::training(tree_frogs_class_split)

set.seed(1)
tree_frogs_class_test <- rsample::testing(tree_frogs_class_split)

set.seed(1)
class_folds <- rsample::vfold_cv(tree_frogs_class_train, v = 5)

tree_frogs_class_rec <-
recipes::recipe(reflex ~ ., data = tree_frogs_class_train) |>
recipes::step_dummy(recipes::all_nominal(), -reflex) |>
recipes::step_zv(recipes::all_predictors()) |>
recipes::step_normalize(recipes::all_numeric())

# random forest classification --------------------------------------
rand_forest_spec <-
parsnip::rand_forest(
mtry = tune::tune(),
trees = 500,
min_n = tune::tune()

) |>
parsnip::set_mode("classification") |>
parsnip::set_engine("ranger")

class_wf_rf <-
workflows::workflow() |>
workflows::add_recipe(tree_frogs_class_rec) |>
workflows::add_model(rand_forest_spec)

set.seed(1)
class_res_rf <-
tune::tune_grid(
object = class_wf_rf,
resamples = class_folds,
grid = 10,
control = ctrl_grid

)

# neural network classification -------------------------------------
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nnet_spec <-
mlp(hidden_units = 5, penalty = 0.01, epochs = 100) |>
set_mode("classification") |>
set_engine("nnet")

class_wf_nn <-
workflows::workflow() |>
workflows::add_recipe(tree_frogs_class_rec) |>
workflows::add_model(nnet_spec)

set.seed(1)
class_res_nn <-
tune::fit_resamples(
object = class_wf_nn,
resamples = class_folds,
control = ctrl_res

)

# binary classification --------------------------------
tree_frogs_2_class_rec <-
recipes::recipe(hatched ~ ., data = tree_frogs_class_train) |>
recipes::step_dummy(recipes::all_nominal(), -hatched) |>
recipes::step_zv(recipes::all_predictors()) |>
recipes::step_normalize(recipes::all_numeric())

set.seed(1)
rand_forest_spec_2 <-
parsnip::rand_forest(
mtry = tune(),
trees = 500,
min_n = tune()

) |>
parsnip::set_mode("classification") |>
parsnip::set_engine("ranger")

log_wf_rf <-
workflows::workflow() |>
workflows::add_recipe(tree_frogs_2_class_rec) |>
workflows::add_model(rand_forest_spec_2)

set.seed(1)
log_res_rf <-
tune::tune_grid(
object = log_wf_rf,
resamples = class_folds,
grid = 10,
control = ctrl_grid

)
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nnet_spec_2 <-
parsnip::mlp(epochs = 100, hidden_units = 5, penalty = 0.1) |>
parsnip::set_mode("classification") |>
parsnip::set_engine("nnet", verbose = 0)

log_wf_nn <-
workflows::workflow() |>
workflows::add_recipe(tree_frogs_2_class_rec) |>
workflows::add_model(nnet_spec_2)

set.seed(1)
log_res_nn <-
tune::fit_resamples(
object = log_wf_nn,
resamples = class_folds,
control = ctrl_res

)

Source

Julie Jung et al. (2020) Multimodal mechanosensing enables treefrog embryos to escape egg-
predators. doi:10.1242/jeb.236141

fit_members Fit model stack members with non-zero stacking coefficients

Description

After evaluating a data stack with blend_predictions(), some number of candidates will have
nonzero stacking coefficients. Such candidates are referred to as "members." Since members’ pre-
dictions will ultimately inform the model stack’s predictions, members should be trained on the full
training set using fit_members().

Usage

fit_members(model_stack, ...)

Arguments

model_stack A model_stack object outputted by blend_predictions().

... Additional arguments. Currently ignored.

Details

To fit members in parallel, please create a plan with the future package. See the documentation of
future::plan() for examples.

https://doi.org/10.1242/jeb.236141
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Value

A model_stack object with a subclass linear_stack—this fitted model contains the necessary
components to predict on new data.

Example Data

This package provides some resampling objects and datasets for use in examples and vignettes
derived from a study on 1212 red-eyed tree frog embryos!

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

reg_folds and class_folds are rset cross-fold validation objects from rsample, splitting the
training data into for the regression and classification model objects, respectively. tree_frogs_reg_test
and tree_frogs_class_test are the analogous testing sets.

reg_res_lr, reg_res_svm, and reg_res_sp contain regression tuning results for a linear regres-
sion, support vector machine, and spline model, respectively, fitting latency (i.e. how long the
embryos took to hatch in response to the jiggle) in the tree_frogs data, using most all of the other
variables as predictors. Note that the data underlying these models is filtered to include data only
from embryos that hatched in response to the stimulus.

class_res_rf and class_res_nn contain multiclass classification tuning results for a random for-
est and neural network classification model, respectively, fitting reflex (a measure of ear function)
in the data using most all of the other variables as predictors.

log_res_rf and log_res_nn, contain binary classification tuning results for a random forest and
neural network classification model, respectively, fitting hatched (whether or not the embryos
hatched in response to the stimulus) using most all of the other variables as predictors.

See ?example_data to learn more about these objects, as well as browse the source code that
generated them.

See Also

Other core verbs: add_candidates(), blend_predictions(), stacks()

Examples

# see the "Example Data" section above for
# clarification on the objects used in these examples!

# put together a data stack
reg_st <-

stacks() |>
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add_candidates(reg_res_lr) |>
add_candidates(reg_res_svm) |>
add_candidates(reg_res_sp)

reg_st

# evaluate the data stack and fit the member models
reg_st |>

blend_predictions() |>
fit_members()

reg_st

# do the same with multinomial classification models
class_st <-

stacks() |>
add_candidates(class_res_nn) |>
add_candidates(class_res_rf) |>
blend_predictions() |>
fit_members()

class_st

# ...or binomial classification models
log_st <-

stacks() |>
add_candidates(log_res_nn) |>
add_candidates(log_res_rf) |>
blend_predictions() |>
fit_members()

log_st

get_expressions Obtain prediction equations for all possible values of type

Description

Obtain prediction equations for all possible values of type

Usage

get_expressions(x, ...)

## S3 method for class '`_multnet`'
get_expressions(x, ...)

## S3 method for class '`_lognet`'
get_expressions(x, ...)
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## S3 method for class '`_elnet`'
get_expressions(x, ...)

Arguments

x A parsnip model with the glmnet engine.

... Not used

Value

A named list with prediction equations for each possibel type.

predict.data_stack Predicting with a model stack

Description

The data stack must be evaluated with blend_predictions() and its member models fitted with
fit_members() to predict on new data.

Usage

## S3 method for class 'data_stack'
predict(object, ...)

Arguments

object A data stack.

... Additional arguments. Currently ignored.

predict.model_stack Predicting with a model stack

Description

Apply a model stack to create different types of predictions.

Usage

## S3 method for class 'model_stack'
predict(object, new_data, type = NULL, members = FALSE, opts = list(), ...)
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Arguments

object A model stack with fitted members outputted from fit_members().

new_data A rectangular data object, such as a data frame.

type Format of returned predicted values—one of "numeric", "class", or "prob". When
NULL, predict() will choose an appropriate value based on the model’s mode.

members Logical. Whether or not to additionally return the predictions for each of the
ensemble members.

opts A list of optional arguments to the underlying predict function passed on to
parsnip::predict.model_fit for each member.

... Additional arguments. Currently ignored.

Example Data

This package provides some resampling objects and datasets for use in examples and vignettes
derived from a study on 1212 red-eyed tree frog embryos!

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

reg_folds and class_folds are rset cross-fold validation objects from rsample, splitting the
training data into for the regression and classification model objects, respectively. tree_frogs_reg_test
and tree_frogs_class_test are the analogous testing sets.

reg_res_lr, reg_res_svm, and reg_res_sp contain regression tuning results for a linear regres-
sion, support vector machine, and spline model, respectively, fitting latency (i.e. how long the
embryos took to hatch in response to the jiggle) in the tree_frogs data, using most all of the other
variables as predictors. Note that the data underlying these models is filtered to include data only
from embryos that hatched in response to the stimulus.

class_res_rf and class_res_nn contain multiclass classification tuning results for a random for-
est and neural network classification model, respectively, fitting reflex (a measure of ear function)
in the data using most all of the other variables as predictors.

log_res_rf and log_res_nn, contain binary classification tuning results for a random forest and
neural network classification model, respectively, fitting hatched (whether or not the embryos
hatched in response to the stimulus) using most all of the other variables as predictors.

See ?example_data to learn more about these objects, as well as browse the source code that
generated them.

Examples

# see the "Example Data" section above for
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# clarification on the data and tuning results
# objects used in these examples!

data(tree_frogs_reg_test)
data(tree_frogs_class_test)

# build and fit a regression model stack
reg_st <-

stacks() |>
add_candidates(reg_res_lr) |>
add_candidates(reg_res_sp) |>
blend_predictions() |>
fit_members()

reg_st

# predict on the tree frogs testing data
predict(reg_st, tree_frogs_reg_test)

# include the predictions from the members
predict(reg_st, tree_frogs_reg_test, members = TRUE)

# build and fit a classification model stack
class_st <-

stacks() |>
add_candidates(class_res_nn) |>
add_candidates(class_res_rf) |>
blend_predictions() |>
fit_members()

class_st

# predict reflex, first as a class, then as
# class probabilities
predict(class_st, tree_frogs_class_test)
predict(class_st, tree_frogs_class_test, type = "prob")

# returning the member predictions as well
predict(

class_st,
tree_frogs_class_test,
type = "prob",
members = TRUE

)

stacks Initialize a Stack
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Description

The stacks() function initializes a data_stack object. Principally, data_stacks are tibbles,
where the first column gives the true outcome in the assessment set, and the remaining columns
give the predictions from each candidate ensemble member. (When the outcome is numeric, there’s
only one column per candidate member. For classification, there are as many columns per candi-
date member as there are levels in the outcome variable minus 1.) They also bring along a few extra
attributes to keep track of model definitions, resamples, and training data.

See ?stacks_description for more discussion of the package, generally, and the basics vignette
for a detailed walk-through of functionality.

Usage

stacks(...)

Arguments

... Additional arguments. Currently ignored.

Value

A data_stack object.

See Also

Other core verbs: add_candidates(), blend_predictions(), fit_members()

stacks_description stacks: Tidy Model Stacking

Description

Model stacking is an ensemble technique that involves training a model to combine the outputs of
many diverse statistical models, and has been shown to improve predictive performance in a variety
of settings. ’stacks’ implements a grammar for ’tidymodels’-aligned model stacking.

Author(s)

Maintainer: Simon Couch <simon.couch@posit.co>

Authors:

• Max Kuhn <max@posit.co>

Other contributors:

• Posit Software, PBC (03wc8by49) [copyright holder, funder]
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See Also

Useful links:

• https://stacks.tidymodels.org/

• https://github.com/tidymodels/stacks

• Report bugs at https://github.com/tidymodels/stacks/issues

tree_frogs Tree frog embryo hatching data

Description

A dataset containing experimental results on hatching behavior of red-eyed tree frog embryos.

Red-eyed tree frog (RETF) embryos can hatch earlier than their normal 7ish days if they detect
potential predator threat. Researchers wanted to determine how, and when, these tree frog embryos
were able to detect stimulus from their environment. To do so, they subjected the embryos at
varying developmental stages to "predator stimulus" by jiggling the embryos with a blunt probe.
Beforehand, though some of the embryos were treated with gentamicin, a compound that knocks
out their lateral line (a sensory organ.) Researcher Julie Jung and her crew found that these factors
inform whether an embryo hatches prematurely or not!

Usage

tree_frogs

Format

A data frame with 1212 rows and 6 variables:

clutch RETFs lay their eggs in gelatinous "clutches" of 30-40 eggs. Eggs with the same clutch ID
are siblings of each other! This variable is useful in mixed effects models. (Unordered factor.)

treatment The treatment group for the embryo. Either "gentamicin", a compound that knocks
out the embryos’ lateral line, or "control" for the negative control group (i.e. sensory organs
intact). (Character.)

reflex A measure of ear function called the vestibulo-ocular reflex, categorized into bins. Ear
function increases from factor levels "low", to "mid", to "full". (Ordered factor.)

age Age of the embryo, in seconds, at the time that the embryo was jiggled. (Numeric, in seconds.)

t_o_d The time of day that the stimulus (i.e. jiggle) was applied. "morning" is 5 a.m. to noon,
"afternoon" is noon to 8 p.m., and "night" is 8 p.m. to 5 a.m. (Character.)

hatched Whether or not the embryo hatched in response to the jiggling! Either "yes" or "no".
(Character.)

latency Time elapsed between the stimulus (i.e. jiggling) and hatching in response to the stimulus,
in seconds. Missing values indicate that the embryo didn’t hatch in response to the stimulus.
(Numeric, in seconds.)

https://stacks.tidymodels.org/
https://github.com/tidymodels/stacks
https://github.com/tidymodels/stacks/issues
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Details

Note that the data included with the stacks package is not necessarily a representative or unbiased
subset of the complete dataset, and is only for demonstrative purposes.

Source

Julie Jung et al. (2020) Multimodal mechanosensing enables treefrog embryos to escape egg-
predators. doi:10.1242/jeb.236141

https://doi.org/10.1242/jeb.236141
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