Package ‘spatialrisk’

September 14, 2025

Type Package
Title Calculating Spatial Risk
Version 0.7.3

Maintainer Martin Haringa <mtharinga@gmail.com>

BugReports https://github.com/mharinga/spatialrisk/issues

Description Provides methods for spatial risk calculations, focusing on
efficient determination of the sum of observations within a circle of a
given radius. These methods are particularly relevant for applications such
as insurance, where recent European Commission regulations require the
calculation of the maximum insured value of fire risk policies for all
buildings that are partly or fully located within a 200 m radius. The
underlying problem is described by Church (1974) <doi:10.1007/BF01942293>.

License GPL (>=2)

URL https://github.com/mharinga/spatialrisk,
https://mharinga.github.io/spatialrisk/

LazyData true

LinkingTo Rcpp, ReppProgress

Imports classInt, data.table, dplyr, fs, ggplot2, lifecycle, mapview,
Rcepp, ReppProgress, rlang, sf, terra, tmap, units, viridis

Depends R (>=4.1.0)
Encoding UTF-8
RoxygenNote 7.3.3

Suggests colourvalues, GenSA, geohashTools, knitr, leafem, leafg],
leaflet, mgcv, rmarkdown, testthat, vroom

NeedsCompilation yes

Author Martin Haringa [aut, cre]
Repository CRAN

Date/Publication 2025-09-14 09:20:02 UTC

https://github.com/mharinga/spatialrisk/issues
https://doi.org/10.1007/BF01942293
https://github.com/mharinga/spatialrisk
https://mharinga.github.io/spatialrisk/

2 choropleth
Contents
choropleth e 2
choropleth_ggplot2 3
CONCENIAtION o v v v v v vttt e ettt e e e e e e e 5
convert_crs_df e 6
find_highest_concentration L 7
Groningen vt it e e e e 9
haversine L 10
highest_concentration 11
INSUMANCE o v vt e et e e e e e e e e 13
interpolate_spline L 13
knmi_historic_data e 15
knmi_stations e e e 16
neighborhood_gh_search L o 16
NL_COrOp o e 17
nl_gemeente e e e 18
nl_postcode2 19
nl_postcode3 e 19
nl_postcoded 20
N_provincieo 21
plotconc. 22
plot.concentrationol e 23
plotneighborhood 24
plot_points e 25
points_in_circle 26
points_in_circle_vec L 27
points_to_polygon e e 28
Index 29
choropleth Create choropleth map
Description
Creates a choropleth map from an ‘sf* object, typically produced by points_to_polygon(). Poly-
gons are shaded according to values in a specified column, with clustering based on the Fisher—Jenks
algorithm. This method minimizes within-class variance and maximizes between-class variance,
making it a common choice for choropleth maps.
Usage
choropleth(
sf_object,

value = "output”,
id_name = "areaname”,
mode = "plot”,

choropleth_ggplot2 3

n=17,
legend_title = "Clustering”,
palette = "viridis"
)
Arguments
sf_object An object of class sf.
value A string giving the name of the column used to shade the polygons.
id_name A string giving the name of the column containing polygon IDs (used for tooltips
in interactive mode).
mode A string indicating whether to create a static map ("plot”, default) or an inter-
active map ("view").
n Integer; number of clusters. Default is 7.

legend_title A string giving the legend title.

palette A palette name or vector of colors. See tmaptools: :palette_explorer() for
available palettes. Prefix the name with "-" to reverse the order. Default is
"viridis".
Details

The function uses the Fisher—Jenks algorithm (style = "fisher") to classify values into n groups.

Value

A tmap object (static or interactive, depending on mode).

Author(s)

Martin Haringa

Examples
test <- points_to_polygon(nl_provincie, insurance, sum(amount, na.rm = TRUE))
choropleth(test)
choropleth(test, id_name = "areaname"”, mode = "view")

choropleth_ggplot?2 Choropleth map of an sf object with ggplot2

Description

Creates a choropleth map from an object of class sf. If the chosen variable can be classified into
discrete intervals using Fisher’s natural breaks, the polygons are shaded by cluster. Otherwise, the
variable is visualized on a continuous scale.

4 choropleth_ggplot2

Usage
choropleth_ggplot2(
sf_object,
value = output,
n=1717,
dig.lab = 2,
legend_title = "Class”,
option = "D",
direction = 1
)
Arguments
sf_object An object of class sf containing polygon geometries.
value Column in sf_object used to shade the polygons (default = output).
n Integer. Number of clusters to use in Fisher classification (default = 7).
dig.lab Integer. Number of digits to display in legend labels (default = 2).

legend_title Character. Title for the legend (default = "Class").
option Character string indicating the colormap option passed to viridis. Options are:
* "magma” (or "A")
e "inferno” (or "B")
e "plasma” (or "C")
e "viridis" (or "D", default)
e "cividis” (or "E")
direction Numeric. Order of colors in the scale. If 1 (default), colors go from darkest to
lightest. If -1, the order is reversed.

Details

The function first attempts to classify the chosen variable into n clusters using Fisher’s natural
breaks (classInt::classIntervals()). If this fails (e.g. due to insufficient unique values), the
function falls back to a continuous scale.

Value

A ggplot object containing the choropleth map.

Author(s)

Martin Haringa

Examples

test <- points_to_polygon(
nl_postcode2,
insurance,
sum(amount, na.rm = TRUE)

concentration 5

)
choropleth_ggplot2(test, value = output)

concentration Concentration calculation

Description

Calculates the concentration, which is the sum of all observations within a circle of a certain radius.

Usage

concentration(

sub,

full,

value,

lon_sub = lon,
lat_sub = lat,
lon_full = 1lon,
lat_full = lat,

radius = 200,
display_progress = TRUE
)
Arguments
sub A data.frame of target points for which concentration risk is calculated. Must
include at least columns for longitude and latitude.
full A data.frame containing reference points. Must include at least columns for
longitude, latitude, and the value of interest to summarize.
value Column name in full containing the values to be summed.
lon_sub Column name in sub for longitude (default: 1on).
lat_sub Column name in sub for latitude (default: 1at).
lon_full Column name in full for longitude (default: 1on).
lat_full Column name in full for latitude (default: 1at).
radius Numeric. Radius of the circle in meters. Must be positive (default: 200).

display_progress
Logical. Whether to display a progress bar (TRUE/FALSE). Default is TRUE.
Details

This function uses a C++ backend for efficient distance calculations (Haversine formula). For each
point in sub, it finds all points in full within the specified radius and sums their value.

Value

convert_crs_df

A data.frame equal to sub with an additional numeric column concentration containing the
summed values from full.

Author(s)

Martin Haringa

Examples

Target points
sub <- data.frame(location = c("p1", "p2"),

lon = c(6.561561, 6.561398),
lat = c(53.21369, 53.21326))

Reference points with values
full <- data.frame(lon = c(6.5614, 6.5620, 6.5630),

lat = c(53.2132, 53.2140, 53.2150),
amount = c(10, 20, 15))

Calculate concentration within 100 meters
concentration(sub, full, value = amount, radius = 100)

convert_crs_df

Convert Coordinate Reference System (CRS)

Description

Convert Coordinate Reference System (CRS) of a data.frame from one CRS to another.

Usage

convert_crs_df(

df,

crs_from
crs_to =
lon_from

lat_from =

lon_to =
lat_to =

Arguments

df
crs_from

crs_to

= 30
4326

= X

35,

’
n

data.frame to be converted.
CRS code of the original coordinate system (default: 3035).
CRS code of the target coordinate system (default: 4326).

find_highest_concentration 7

lon_from column name of longitude values in df (default: "x").

lat_from column name of latitude values in df (default: "y").

lon_to column name for longitude values in the converted data frame (default: "lon").

lat_to column name for latitude values in the converted data frame (default: "lat").
Value

data.frame with converted coordinates

Author(s)

Martin Haringa

find_highest_concentration
Find highest concentration

Description

Identifies the central coordinates of a circle with a fixed radius that maximizes the coverage of
demand points.

Usage
find_highest_concentration(
df,
value,
top_n =1,
radius = 200,

cell_size = 100,

grid_precision = 1,
lon = "lon",
lat = "lat",

crs_metric = 3035,
print_progress = TRUE

)
Arguments
df A data.frame containing demand points. Must include at least columns for lon-
gitude, latitude, and the value of interest.
value Column name in df with the value of interest to summarize.
top_n Positive integer greater or equal to 1 (default is 1). Specifies how many high-

est concentration circles are returned. If top_n > 1, then after each iteration the
points belonging to the highest concentration are removed from df. This pre-
vents the subsequent concentrations from being located in the same area, which
would otherwise repeatedly select overlapping points with the largest values.

radius

cell_size

grid_precision

lon
lat

crs_metric

print_progress

Details

find_highest_concentration

Numeric. Radius of the circle in meters (default = 200).

Numeric. Size of the grid cell in meters (default is 100). Defines the resolution
of the initial raster grid. The choice of cell size depends on the size of the study
area. For example, for a country the size of the Netherlands, cells of 100 x 100
meters are typically sufficient. For larger areas such as Germany, a cell size of
200 x 200 meters may be more appropriate. The choice of cell_size does not
affect the final result, only the computational speed.

Numeric. Precision of the search grid in meters (default is 1). Determines the
spacing of sub-points within each raster cell. For example, with cell_size
=100 and grid_precision =1, 10,000 sub-points (100 x 100) are evaluated
per cell. Larger values reduce the number of sub-points (and runtime), but also
reduce spatial accuracy.

Column name in df for longitude (default = "1on"). Must be in EPSG:4326.
Column name in df for latitude (default = "1at"). Must be in EPSG:4326.

Numeric. Metric Coordinate Reference System (CRS) used in background cal-
culations. For Europe use EPSG:3035 (default). For the United States use
EPSG:6317. For Asia-Pacific use EPSG:8859.

Logical. Whether to print progress messages (TRUE/FALSE).

A recent regulation by the European Commission mandates insurers to report the maximum insured
value of fire risk policies for all buildings partly or fully within a circle of radius 200 meters (see Ar-
ticle 132 - fire risk sub-module - of the Delegated Regulation). This captures the risk of catastrophic
fire or explosion, including terrorist attacks.

The problem resembles a Maximal Covering Location Problem (MCLP) with a fixed radius, a
classic facility location problem. The goal is to select the best locations to maximize coverage of
demand points, ensuring each demand point lies within the radius of at least one selected facility.

Value

A list with two elements:

1. A data.frame with the top_n highest concentrations.

2. A data.frame with the subset of df corresponding to those concentrations.

Author(s)

Martin Haringa

References

Commission Delegated Regulation (EU) (2015). Solvency II Delegated Act 2015/35. Official Jour-
nal of the European Union, 58:124.

https://epsg.io/3035
https://epsg.io/6317
https://epsg.io/8859

Groningen 9

Examples

Find single highest concentration
x <- find_highest_concentration(Groningen, value = "amount")
plot(x)

Find top 2 concentrations with smaller grid cells

y <- find_highest_concentration(Groningen, "amount"”,
top_n = 2, cell_size = 50)

plot(y)

Groningen Coordinates of houses in Groningen

Description

A dataset of postal codes and the corresponding spatial locations in terms of a latitude and a longi-
tude.

Usage

Groningen

Format

A data frame with 25000 rows and 8 variables:

street Name of street

number Number of house

letter Letter of house

suffix Suffix to number of house
postal_code Postal code of house
city The name of the city

lon Longitude (in degrees)

lat Latitude (in degrees)

amount Random value

Source

The BAG is the Dutch registry for Buildings and adresses (Basisregistratie adressen en gebouwen).

10 haversine

haversine Haversine great circle distance

Description

Calculates the shortest distance between two points on the Earth’s surface using the Haversine
formula, also known as the great-circle distance or "as the crow flies".

Usage

haversine(lat_from, lon_from, lat_to, lon_to, r = 6378137)

Arguments
lat_from Numeric. Latitude(s) of the starting point(s) in decimal degrees (EPSG:4326).
lon_from Numeric. Longitude(s) of the starting point(s) in decimal degrees (EPSG:4326).
lat_to Numeric. Latitude(s) of the destination point(s) in decimal degrees (EPSG:4326).
lon_to Numeric. Longitude(s) of the destination point(s) in decimal degrees (EPSG:4326).
r Numeric. Radius of the Earth in meters (default = 6378137).

Details

The Haversine ("half-versed-sine’) formula was published by R.W. Sinnott in 1984, although it has
been known for much longer.

This function is fully vectorized: if multiple coordinates are supplied, it returns a distance for each
pair of points.
Value

A numeric vector with distances in the same unit as r (default in meters).

Author(s)

Martin Haringa

References

Sinnott, R.W, 1984. Virtues of the Haversine. Sky and Telescope 68(2): 159.

Examples

Single pair
haversine(53.24007, 6.520386, 53.24054, 6.520386)

Vectorized usage
lat_from <- c(53.24, 52.37)
lon_from <- c(6.52, 4.90)

highest_concentration 11

lat_to <- c(48.85, 51.92)
lon_to <- c(2.35, 4.48)
haversine(lat_from, lon_from, lat_to, lon_to)

highest_concentration Highest concentration risk

Description

Find the centre coordinates of a circle with a fixed radius that maximizes the coverage of total
fire risk insured. ‘highest_concentration()* returns the coordinates (lon/lat) and the corresponding
concentration. The concentration is defined as the sum of all observations within a circle of a certain
radius. See concentration for determining concentration for pre-defined coordinates.

Usage

highest_concentration(
df,
value,
lon = 1lon,
lat = 1lat,
lowerbound = NULL,
radius = 200,
grid_distance = 25,
gh_precision = 6,
display_progress = TRUE

)
Arguments
df data.frame of locations, should at least include column for longitude, latitude
and sum insured.
value column name with value of interest to summarize (e.g. sum insured).
lon column name with longitude (defaults to ‘lon‘).
lat column name with latitude (defaults to ‘lat®).
lowerbound set lowerbound.
radius radius (in meters) (default is 200m).

grid_distance distance (in meters) for precision of concentration risk (default is 25m). ‘neigh-
borhood_search()‘ can be used to search for coordinates with even higher con-
centrations in the neighborhood of the highest concentrations.

gh_precision set precision for geohash.

display_progress
show progress bar (TRUE/FALSE). Defaults to TRUE.

12 highest_concentration

Details

A recently European Commission regulation requires insurance companies to determine the maxi-
mum value of insured fire risk policies of all buildings that are partly or fully located within circle
of a radius of 200m (Commission Delegated Regulation (EU), 2015, Article 132). The problem can
be stated as: "find the centre coordinates of a circle with a fixed radius that maximizes the coverage
of total fire risk insured". This can be viewed as a particular instance of the Maximal Covering
Location Problem (MCLP) with fixed radius. See Gomes (2018) for a solution to the maximum
fire risk insured capital problem using a multi-start local search meta-heuristic. The computational
performance of highest_concentration() is investigated to overcome the long times the MCLP
algorithm is taking. highest_concentration() is written in C++, and for 500,000 buildings it
needs about 5-10 seconds to determine the maximum value of insured fire risk policies that are
partly or fully located within circle of a radius of 200m.

Value

data.frame with coordinates (lon/lat) with the highest concentrations

Author(s)

Martin Haringa

References

Commission Delegated Regulation (EU) (2015). Solvency II Delegated Act 2015/35. Official Jour-
nal of the European Union, 58:124.

Gomes M.I., Afonso L.B., Chibeles-Martins N., Fradinho J.M. (2018). Multi-start Local Search
Procedure for the Maximum Fire Risk Insured Capital Problem. In: Lee J., Rinaldi G., Mahjoub
A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science, vol 10856.
Springer, Cham. <doi:10.1007/978-3-319-96151-4_19>

Examples

Not run:

Find highest concentration with a precision of a grid of 25 meters
hc1l <- highest_concentration(Groningen, amount, radius = 200,
grid_distance = 25)

Look for coordinates with even higher concentrations in the

neighborhood of the coordinates with the highest concentration
hc1_nghb <- neighborhood_gh_search(hcl, max.call = 7000)
print(hc1_nghb)

Create map with geohashes above the lowerbound
The highest concentration lies in one of the geohashes

plot(hc1)

Create map with highest concentration
plot(hc1_nghb)

End(Not run)

insurance 13

insurance Sum insured per postal code in the Netherlands

Description

A dataset of postal codes with their sum insured, population and the corresponding spatial locations
in terms of a latitude and a longitude.
Usage

insurance

Format
A data frame with 29,990 rows and 5 variables:

postcode 6-digit postal code

population_pc4 Population per 4-digit postal code

amount Sum insured

lon Longitude (in degrees) of the corresponding 6-digit postal code
lat Latitude (in degrees) of the corresponding 6-digit postal code

Author(s)

Martin Haringa

interpolate_spline Splines on the sphere

Description

Spline interpolation and smoothing on the sphere.

Usage

interpolate_spline(
observations,
targets,
value,
lon_obs = 1lon,
lat_obs = lat,
lon_targets = lon,
lat_targets = lat,
k = 50

14

Arguments

observations

targets

value
lon_obs
lat_obs
lon_targets
lat_targets
k

Details

interpolate_spline

data.frame of observations.

data.frame of locations to calculate the interpolated and smoothed values for
(target points).

Column with values in observations.

Column in observations with longitude (lon is default).
Column in observations with latitude (lat is default).
Column in targets with longitude (lon is default).
Column in targets with latitude (lat is default).

(default 50) is the basis dimension. For small data sets reduce k manually rather
than using default.

observations should include at least columns for longitude and latitude.

targets should include at least columns for longitude, latitude and value of interest to interpolate

and smooth.

A smooth of the general type discussed in Duchon (1977) is used: the sphere is embedded in a 3D
Euclidean space, but smoothing employs a penalty based on second derivatives (so that locally as
the smoothing parameter tends to zero we recover a "normal” thin plate spline on the tangent space).
This is an unpublished suggestion of Jean Duchon.

Value

Object equal to object targets including an extra column with predicted values.

Author(s)

Martin Haringa

References

Splines on the sphere

Examples

Not run:

target <- sf::st_drop_geometry(nl_postcode3)

obs <- dplyr::sample_n(insurance, 1000)

pop_df <- interpolate_spline(obs, target, population_pc4, k = 20)
pop_sf <- dplyr::left_join(nl_postcode3, pop_df)
choropleth(pop_sf, value = "population_pc4_pred”, n = 13)

End(Not run)

knmi_historic_data 15

knmi_historic_data Retrieve historic weather data for the Netherlands

Description
This function retrieves historic weather data collected by the official KNMI weather stations. See
spatialrisk::knmi_stations for a list of the official KNMI weather stations.

Usage

knmi_historic_data(startyear, endyear)

Arguments
startyear start year for historic weather data.
endyear end year for historic weather data.
Format

The returned data frame contains the following columns:
¢ station = ID of measurement station;
e date = Date;
* FH = Hourly mean wind speed (in 0.1 m/s);
e FX = Maximum wind gust (in 0.1 m/s) during the hourly division;
* DR = Precipitation duration (in 0.1 hour) during the hourly division;
* RH = Hourly precipitation amount (in 0.1 mm) (-1 for <0.05 mm);
* city = City where the measurement station is located;
* lon = Longitude of station (crs = 4326);
e lat = Latitude of station (crs = 4326).

Value

Data frame containing weather data and meta data for weather station locations.

Author(s)

Martin Haringa

Examples

Not run:
knmi_historic_data(2015, 2019)

End(Not run)

16 neighborhood_gh_search

knmi_stations KNMI stations

Description

A data frame containing the IDs and meta-data on the official KNMI weather stations.

Usage

knmi_stations

Format
A data frame with 50 rows and 7 variables:

station ID of the station (209-391)

city City where the station is located

lon Longitude of station (crs = 4326)

lat Latitude of the station (crs = 4326)
altitude Altitude of the station (in meters)
X X coordinate of the station (crs = 32631)
Y Y coordinate of the station (crs = 32631)

Author(s)

Martin Haringa

neighborhood_gh_search
Search for coordinates with higher concentrations within geohash

Description

highest_concentration returns the highest concentration within a portfolio based on grid points.
However, higher concentrations can be found within two grid points. ‘neighborhood_gh_search()*
looks for even higher concentrations in the neighborhood of the grid points with the highest con-
centrations. This optimization is done by means of Simulated Annealing.

Usage

neighborhood_gh_search(
hc,
highest_geohash = 1,
max.call = 1000,
verbose = TRUE,
seed = 1

nl_corop 17

Arguments

hc object of class ‘concentration® obtained from ‘highest_concentration()*
highest_geohash
the number of geohashes the searching algorithm is applied to. Defaults to 1
(i.e. algorithm is only applied to the geohash with the highest concentration).

max.call maximum number of calls to the concentration function (i.e. the number of
coordinates in the neighborhood of the highest concentration). Defaults to 1000.

verbose show messages from the algorithm (TRUE/FALSE). Defaults to FALSE.
seed set seed

Value
data.frame

Author(s)

Martin Haringa

Examples

Not run:

Find highest concentration with a precision of a grid of 25 meters
hcl <- highest_concentration(Groningen, amount, radius = 200,
grid_distance = 25)

Increase the number of calls for more extensive search

hc1_nghb <- neighborhood_gh_search(hcl, max.call = 7000, highest_geohash = 1)
hc2_nghb <- neighborhood_gh_search(hcl, max.call = 7000, highest_geohash = 2)
plot(hc1_nghb)

plot(hc2_nghb)

End(Not run)

nl_corop Object of class sf for COROP regions in the Netherlands

Description

An object of class sf (simple feature) for COROP regions in the Netherlands.

Usage

nl_corop

18 nl_gemeente

Format
A simple feature object with 40 rows and 5 variables:

corop_nr corop number

areaname COrop name

geometry geometry object of COROP region
lon longitude of the corop centroid

lat latitude of the corop centroid

Details

A CORORP region is a regional area within the Netherlands. These regions are used for analyti-
cal purposes by, among others, Statistics Netherlands. The Dutch abbreviation stands for Coordi-
natiecommissie Regionaal Onderzoeksprogramma, literally the Coordination Commission Regional
Research Programme.

Author(s)

Martin Haringa

nl_gemeente Object of class st for municipalities in the Netherlands

Description
An object of class sf (simple feature) for municipalities (Dutch: gemeentes) in the Netherlands in
the year 2021.

Usage

nl_gemeente

Format
A simple feature object with 380 rows and 6 variables:

id id of gemeente

code code of gemeente

areaname name of gemeente

lon longitude of the gemeente centroid
lat latitude of the gemeente centroid

geometry geometry object of gemeente

Author(s)

Martin Haringa

nl_postcode?2 19

nl_postcode2 Object of class sf for 2-digit postcode regions in the Netherlands

Description

An object of class sf (simple feature) for 2-digit postal codes (Dutch: postcode) regions in the
Netherlands.

Usage

nl_postcode?

Format
A simple feature object with 90 rows and 4 variables:
areaname 2-digit postal code
geometry geometry object of postal code

lon longitude of the 2-digit postal code centroid
lat latitude of the 2-digit postal code centroid

Details

Postal codes in the Netherlands, known as postcodes, are alphanumeric, consisting of four digits
followed by two uppercase letters. The first two digits indicate a city and a region, the second two
digits and the two letters indicate a range of house numbers, usually on the same street.

Author(s)

Martin Haringa

nl_postcode3 Object of class st for 3-digit postcode regions in the Netherlands

Description

An object of class sf (simple feature) for 3-digit postal codes (Dutch: postcode) regions in the
Netherlands.

Usage

nl_postcode3

20 nl_postcode4

Format

A simple feature object with 799 rows and 3 variables:

areaname 3-digit postal code

geometry geometry object of postal code

lon longitude of the 3-digit postal code centroid
lat latitude of the 3-digit postal code centroid

Details

Postal codes in the Netherlands, known as postcodes, are alphanumeric, consisting of four digits
followed by two uppercase letters. The first two digits indicate a city and a region, the second two
digits and the two letters indicate a range of house numbers, usually on the same street.

Author(s)

Martin Haringa

nl_postcode4 Object of class sf for 4-digit postcode regions in the Netherlands

Description

An object of class sf (simple feature) for 4-digit postal codes (Dutch: postcode) regions in the
Netherlands.

Usage

nl_postcode4

Format

A simple feature object with 4053 rows and 7 variables:

pcd 4-digit postal code
areaname name of corresponding 4-digit postal code
city name of city

biggest_20cities pc4 is in one of the following twenty (biggest) cities in the Netherlands: Ams-
terdam, Rotterdam, ’s-Gravenhage, Utrecht, Eindhoven, Tilburg, Groningen, Almere, Breda,
Nijmegen, Enschede, Apeldoorn, Haarlem, Amersfoort, Arnhem, ’s-Hertogenbosch, Zoeter-
meer, Zwolle, Maastricht, Leiden.

geometry geometry object of postal code
lon longitude of the 4-digit postal code centroid
lat latitude of the 4-digit postal code centroid

nl_provincie 21

Details
Postal codes in the Netherlands, known as postcodes, are alphanumeric, consisting of four digits

followed by two uppercase letters. The first two digits indicate a city and a region, the second two
digits and the two letters indicate a range of house numbers, usually on the same street.

Author(s)

Martin Haringa

nl_provincie Object of class sf for provinces in the Netherlands

Description

An object of class sf (simple feature) for provinces (Dutch: provincies) in the Netherlands.

Usage

nl_provincie

Format
A simple feature object with 12 rows and 4 variables:
areaname province name
geometry geometry object of province

lon longitude of the province centroid

lat latitude of the province centroid

Author(s)

Martin Haringa

22 plot.conc

plot.conc Automatically create a plot for objects obtained from high-
est_concentration()

Description

Takes an object produced by ‘highest_concentration()‘, and creates an interactive map.

Usage

S3 method for class 'conc'
plot(
X,
grid_points = TRUE,
legend_title = NULL,

palette = "viridis”,
legend_position = "bottomleft"”,
providers = c("CartoDB.Positron”, "nlmaps.luchtfoto”),
)
Arguments
X object of class ‘conc‘ obtained from ‘highest_concentration()*

grid_points show grid points (TRUE), or objects (FALSE)
legend_title title of legend

palette palette for grid points (defaults to "viridis")
legend_position
legend position for grid points legend (defaults to "bottomleft")

providers providers to show. See ‘leaflet::providers® for a list.

additional arguments affecting the interactive map produced

Value

Interactive view of geohashes with highest concentrations

Author(s)

Martin Haringa

plot.concentration 23

plot.concentration Automatically create a plot for objects obtained from
find_highest_concentration()

Description

Automatically create a plot for objects obtained from find_highest_concentration().

Usage
S3 method for class 'concentration'
plot(
X’
type = c("concentration”, "focal”, "rasterized”, "updated_focal”),

color1 = NULL,
max.rad = 20,

)
Arguments
X x object of class concentration obtained from highest_concentration()
type is one of "concentration" (default), "rasterized", "focal", "updated_focal". See
details for more information.
colori color when one concentration is plotted (default is "#4B0055").
max.rad maximal radius for size of circles in plot (default is 20).
additional arguments.
Details
More info for type:

1. "concentration": this is..
2. "focal": this is..

3. "rasterized": this is..

4

. "updated_focal": this is..

Author(s)

Martin Haringa

24 plot.neighborhood

Examples

x <- find_highest_concentration(Groningen, "amount")
plot(x, "concentration")

plot(x, "rasterized")

plot(x, "focal”)

plot(x, "updated_focal”)

plot.neighborhood Automatically create a plot for objects obtained from neighbor-
hood_gh_search()

Description

Takes an object produced by ‘neighborhood_gh_search()‘, and creates an interactive map.

Usage

S3 method for class 'neighborhood'

plot(
X,
buffer = 0,
legend_title = NULL,
palette = "viridis”,
legend_position = "bottomleft”,
palette_circle = "Y10rRd",
legend_position_circle = "bottomright”,
legend_title_circle = "Highest concentration”,
providers = c("CartoDB.Positron”, "nlmaps.luchtfoto"),

Arguments

X object neighborhood object produced by ‘neighborhood_gh_search()*
buffer numeric value, show objects within buffer (in meters) from circle (defaults to 0)
legend_title title of legend
palette palette for points (defaults to "viridis")
legend_position
legend position for points legend (defaults to "bottomleft")
palette_circle palette for circles (default to "Y1OrRd")
legend_position_circle
legend position for circles legend (defaults to "bottomright")
legend_title_circle

title of legend for circles
providers providers to show. See ‘leaflet::providers® for a list.

additional arguments affecting the interactive map produced

plot_points 25

Value

Interactive view of highest concentration on map

Author(s)

Martin Haringa

plot_points Create interactive point map

Description

Creates an interactive map for a data.frame containing point coordinates, colored by a selected
variable.

Usage

plot_points(df, value, lon = "lon"”, lat = "lat", crs = 4326, at = NULL)

Arguments
df A data.frame containing columns for longitude and latitude.
value A string giving the name of the column in df to be visualized.
lon A string with the name of the column containing longitude values. Default is
"lon".
lat A string with the name of the column containing latitude values. Default is
"lat".
crs Integer; EPSG code for the coordinate reference system. Default is 4326.
at Optional numeric vector; breakpoints used for visualization.
Value

An interactive mapview object.

Examples

Not run:
plot_points(Groningen, value = "amount")

End(Not run)

26 points_in_circle

points_in_circle Find points within a circle around a center coordinate

Description

This function selects rows from a data frame whose longitude/latitude coordinates fall within a
given radius (in meters) from a specified center point. It also calculates the distance of each point
to the center.

Usage
points_in_circle(
data,
lon_center,
lat_center,
lon = lon,
lat = lat,
radius = 200,
sort = TRUE
)
Arguments
data A data frame containing at least longitude and latitude columns.
lon_center Numeric scalar, longitude of the circle center.
lat_center Numeric scalar, latitude of the circle center.
lon Name of the longitude column in data.
lat Name of the latitude column in data.
radius Numeric, circle radius in meters. Default is 200.
sort Logical, if TRUE (default) results are sorted by distance from the center (closest
first). If FALSE, the order of data is preserved.
Value

A data frame subset of data with an extra column distance_m giving the distance to the center
point.
Author(s)

Martin Haringa

Examples

points_in_circle(Groningen, lon_center = 6.571561, lat_center = 53.21326,
radius = 60)

points_in_circle_vec 27

points_in_circle_vec Filter observations within circle (vectorized)

Description

Filter all observations in a data.frame that fall within a circle of a specified radius drawn around a
given latitude and longitude point.

Usage
points_in_circle_vec(
data,
lon_center,
lat_center,
lon = lon,
lat = lat,
radius = 200
)
Arguments
data data.frame with at least columns for longitude and latitude.
lon_center numeric. Representing the longitude of the circle’s center.
lat_center numeric. Representing the latitude of the circle’s center.
lon column name in data containing longitudes (default is 1on).
lat column name in data containing latitudes (default is 1at).
radius radius of the circle in meters (default is 200m).
Value

A subset of the input data.frame containing only the observations that fall within the specified circle.

Author(s)

Martin Haringa

Examples

points_in_circle_vec(Groningen, lon_center = c(6.571561, 6.56561),
lat_center = ¢(53.21326, 53.20326), radius = 60)

28 points_to_polygon

points_to_polygon Map points to polygons

Description

Join a data.frame containing coordinates (longitude and latitude) to polygon geometries. Arithmetic
operations are then applied to the attributes of the joined coordinates to obtain aggregated values
for each polygon.

Usage
points_to_polygon(sf_map, df, oper, crs = 4326, outside_print = FALSE)

Arguments
sf_map object of class sf representing the polygon geometries.
df data.frame containing coordinates (column names should be ’lon’ and ’lat’)
oper arithmetic operation to be applied on the polygon level.
crs coordinate reference system (default is 4326).

outside_print logical indicating whether to print points that are not within a polygon (default
is FALSE).

Value

An object of class sf

Author(s)

Martin Haringa

Examples

points_to_polygon(nl_postcode2, insurance, sum(amount, na.rm = TRUE))
Not run:

shp_read <- sf::st_read("~/path/to/file.shp")
points_to_polygon(shp_read, insurance, sum(amount, na.rm = TRUE))

End(Not run)

Index

* datasets points_in_circle, 26
Groningen, 9 points_in_circle_vec, 27
insurance, 13 points_to_polygon, 28
knmi_stations, 16
nl_corop, 17

nl_gemeente, 18

nl_postcode2, 19
nl_postcode3, 19
nl_postcode4, 20
nl_provincie, 21

choropleth, 2
choropleth_ggplot2, 3
concentration, 5, 11
convert_crs_df, 6

find_highest_concentration, 7
Groningen, 9

haversine, 10
highest_concentration, 11, 16

insurance, 13
interpolate_spline, 13

knmi_historic_data, 15
knmi_stations, 16

neighborhood_gh_search, 16
nl_corop, 17
nl_gemeente, 18
nl_postcode2, 19
nl_postcode3, 19
nl_postcode4, 20
nl_provincie, 21

plot.conc, 22
plot.concentration, 23
plot.neighborhood, 24
plot_points, 25

29

	choropleth
	choropleth_ggplot2
	concentration
	convert_crs_df
	find_highest_concentration
	Groningen
	haversine
	highest_concentration
	insurance
	interpolate_spline
	knmi_historic_data
	knmi_stations
	neighborhood_gh_search
	nl_corop
	nl_gemeente
	nl_postcode2
	nl_postcode3
	nl_postcode4
	nl_provincie
	plot.conc
	plot.concentration
	plot.neighborhood
	plot_points
	points_in_circle
	points_in_circle_vec
	points_to_polygon
	Index

