## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(semfindr) dat <- pa_dat head(dat) ## ----------------------------------------------------------------------------- mod <- " m1 ~ iv1 + iv2 dv ~ m1 " ## ----------------------------------------------------------------------------- library(lavaan) fit <- sem(mod, dat) ## ----echo = FALSE, include = FALSE-------------------------------------------- if (file.exists("semfindr_fit_rerun.RDS")) { fit_rerun <- readRDS("semfindr_fit_rerun.RDS") } else { fit_rerun <- lavaan_rerun(fit) saveRDS(fit_rerun, "semfindr_fit_rerun.RDS") } ## ----echo = FALSE------------------------------------------------------------- fit_no1 <- sem(mod, dat[-1, ]) fit_no43 <- sem(mod, dat[-43, ]) ## ----eval = FALSE------------------------------------------------------------- # fit_rerun <- lavaan_rerun(fit) ## ----------------------------------------------------------------------------- fit_est_change <- est_change(fit_rerun) fit_est_change ## ----echo = FALSE------------------------------------------------------------- i <- order(fit_est_change[, "gcd"], decreasing = TRUE) i_top5 <- i[1:5] round(fit_est_change[i_top5, ], 3) i_top5_gcd_overall <- i_top5 ## ----------------------------------------------------------------------------- fit_est_change_paths_only <- est_change(fit_rerun, parameters = c("m1 ~ iv1", "m1 ~ iv2", "dv ~ m1")) fit_est_change_paths_only ## ----echo = FALSE------------------------------------------------------------- i <- order(fit_est_change_paths_only[, "gcd"], decreasing = TRUE) ## ----eval = FALSE------------------------------------------------------------- # fit_est_change_paths_only <- est_change(fit_rerun, # parameters = c("~")) ## ----echo = FALSE------------------------------------------------------------- i_top5_gcd_paths <- i[1:5] ## ----------------------------------------------------------------------------- fit_est_change_raw <- est_change_raw(fit_rerun) fit_est_change_raw ## ----------------------------------------------------------------------------- fit_est_change_raw_std <- est_change_raw(fit_rerun, standardized = TRUE) fit_est_change_raw_std ## ----------------------------------------------------------------------------- standardizedSolution(fit, se = FALSE)[1, ] standardizedSolution(sem(mod, dat[-43, ]), se = FALSE)[1, ] ## ----------------------------------------------------------------------------- fit_est_change_raw_std_paths <- est_change_raw(fit_rerun, standardized = TRUE, parameters = c("m1 ~ iv1", "m1 ~ iv2", "dv ~ m1")) fit_est_change_raw_std_paths ## ----eval = FALSE------------------------------------------------------------- # fit_est_change_raw_std_paths <- est_change_raw(fit_rerun, # standardized = TRUE, # parameters = c("~")) ## ----------------------------------------------------------------------------- fit_md <- mahalanobis_rerun(fit_rerun) fit_md ## ----------------------------------------------------------------------------- fit_mc <- fit_measures_change(fit_rerun, fit_measures = c("chisq", "cfi", "tli", "rmsea")) fit_mc ## ----------------------------------------------------------------------------- print(fit_mc, sort_by = "chisq") ## ----eval = FALSE------------------------------------------------------------- # fit_mc <- fit_measures_change(fit_rerun) ## ----------------------------------------------------------------------------- fit_influence <- influence_stat(fit_rerun) fit_influence ## ----------------------------------------------------------------------------- gcd_plot(fit_influence, largest_gcd = 3) ## ----------------------------------------------------------------------------- md_plot(fit_influence, largest_md = 3) ## ----------------------------------------------------------------------------- gcd_gof_plot(fit_influence, fit_measure = "rmsea", largest_gcd = 3, largest_fit_measure = 3) ## ----------------------------------------------------------------------------- gcd_gof_md_plot(fit_influence, fit_measure = "rmsea", largest_gcd = 3, largest_fit_measure = 3, largest_md = 3, circle_size = 15) ## ----fig.height = 7----------------------------------------------------------- est_change_plot(fit_est_change, largest_change = 3) ## ----------------------------------------------------------------------------- est_change_plot(fit_est_change, parameters = "~", largest_change = 3) ## ----------------------------------------------------------------------------- est_change_plot(fit_est_change_raw, parameters = "~", largest_change = 3) ## ----eval = FALSE------------------------------------------------------------- # est_change_plot(fit_influence, # parameters = "~", # largest_change = 3) ## ----fig.height = 7----------------------------------------------------------- est_change_gcd_plot(fit_est_change, largest_gcd = 3) ## ----------------------------------------------------------------------------- est_change_gcd_plot(fit_est_change, parameters = "~", largest_gcd = 3) ## ----eval = FALSE------------------------------------------------------------- # est_change_gcd_plot(fit_influence, # parameters = "~", # largest_gcd = 3) ## ----------------------------------------------------------------------------- fit_est_change_approx <- est_change_approx(fit) fit_est_change_approx ## ----------------------------------------------------------------------------- fit_est_change_approx_paths <- est_change_approx(fit, parameters = "~") fit_est_change_approx_paths ## ----------------------------------------------------------------------------- fit_est_change_raw_approx <- est_change_raw_approx(fit) fit_est_change_raw_approx ## ----------------------------------------------------------------------------- fit_md <- mahalanobis_rerun(fit) fit_md ## ----------------------------------------------------------------------------- fit_mc_approx <- fit_measures_change_approx(fit, fit_measures = c("chisq", "cfi", "tli", "rmsea")) fit_mc_approx ## ----------------------------------------------------------------------------- print(fit_mc_approx, sort_by = "chisq") ## ----eval = FALSE------------------------------------------------------------- # fit_mc_approx <- fit_measures_change_approx(fit) ## ----------------------------------------------------------------------------- fit_influence_approx <- influence_stat(fit) fit_influence_approx ## ----------------------------------------------------------------------------- gcd_plot(fit_influence_approx, largest_gcd = 3) ## ----------------------------------------------------------------------------- md_plot(fit_influence_approx, largest_md = 3) ## ----------------------------------------------------------------------------- gcd_gof_plot(fit_influence_approx, fit_measure = "rmsea", largest_gcd = 3, largest_fit_measure = 3) ## ----------------------------------------------------------------------------- gcd_gof_md_plot(fit_influence_approx, fit_measure = "rmsea", largest_gcd = 3, largest_fit_measure = 3, largest_md = 3, circle_size = 15) ## ----fig.height = 7----------------------------------------------------------- est_change_plot(fit_est_change_approx, largest_change = 3) ## ----------------------------------------------------------------------------- est_change_plot(fit_est_change_approx, parameters = "~", largest_change = 3) ## ----------------------------------------------------------------------------- est_change_plot(fit_est_change_raw_approx, parameters = "~", largest_change = 3) ## ----eval = FALSE------------------------------------------------------------- # est_change_plot(fit_influence_approx, # parameters = "~", # largest_change = 3) ## ----fig.height = 7----------------------------------------------------------- est_change_gcd_plot(fit_est_change_approx, largest_gcd = 3) ## ----------------------------------------------------------------------------- est_change_gcd_plot(fit_est_change_approx, parameters = "~", largest_gcd = 3) ## ----eval = FALSE------------------------------------------------------------- # est_change_gcd_plot(fit_influence_approx, # parameters = "~", # largest_gcd = 3)