## ----setup-blind,include=FALSE------------------------------------------------ library(Matrix) ## ----setup, warning=FALSE,message=FALSE--------------------------------------- library(netrankr) library(igraph) set.seed(1886) #for reproducibility ## ----simple_graph, fig.align='center', fig.width=3---------------------------- data("dbces11") g <- dbces11 plot(g, vertex.color="black",vertex.label.color="white", vertex.size=16,vertex.label.cex=0.75, edge.color="black", margin=0,asp=0.5) ## ----neighborhood------------------------------------------------------------- u <- 3 v <- 5 Nu <- neighborhood(g,order=1,nodes=u,mindist = 1)[[1]] #N(u) Nv <- neighborhood(g,order=1,nodes=v,mindist = 0)[[1]] #N[v] Nu Nv ## ----inclusion---------------------------------------------------------------- all(Nu%in%Nv) ## ----neighborhood_inclusion--------------------------------------------------- P <- neighborhood_inclusion(g, sparse = FALSE) P ## ----dominance_graph,fig.align='center',fig.width=5--------------------------- g.dom <- dominance_graph(P) plot(g.dom, vertex.color="black",vertex.label.color="white", vertex.size=16, vertex.label.cex=0.75, edge.color="black", edge.arrow.size=0.5,margin=0,asp=0.5) ## ----indices------------------------------------------------------------------ cent.df <- data.frame( vertex=1:11, degree=degree(g), betweenness=betweenness(g), closeness=closeness(g), eigenvector=eigen_centrality(g)$vector, subgraph=subgraph_centrality(g) ) #rounding for better readability cent.df.rounded <- round(cent.df,4) cent.df.rounded ## ----undominated-------------------------------------------------------------- which(rowSums(P)==0) ## ----rank_preserved----------------------------------------------------------- apply(cent.df[,2:6],2,function(x) is_preserved(P,x))