## ----property, include = FALSE------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7 ) ## ----setup, message=FALSE----------------------------------------------------- library(morseDR) ## ----step1TT------------------------------------------------------------------ data(cadmium2) binaryDataCheck(cadmium2) ## ----step2TT------------------------------------------------------------------ survData_Cd <- binaryData(cadmium2) head(survData_Cd) ## ----step2TTm----------------------------------------------------------------- survData_Cd <- modelData(cadmium2, type = 'binary') head(survData_Cd) ## ----step3TT------------------------------------------------------------------ plot(survData_Cd, pool.replicate = FALSE) ## ----plotTT------------------------------------------------------------------- plot(survData_Cd, concentration = 124, addlegend = FALSE, pool.replicate = FALSE) ## ----plotTTpool--------------------------------------------------------------- plot(survData_Cd, pool.replicate = TRUE) ## ----doseResponse_------------------------------------------------------------ # without pooling replicates survData_Cd_DR_ <- doseResponse(survData_Cd, target.time = 21) ## ----plot_DoseResponse_------------------------------------------------------- plot(survData_Cd_DR_) ## ----plot_DoseResponse_logScaled---------------------------------------------- plot(survData_Cd_DR_, log.scale = TRUE) ## ----doseResponse------------------------------------------------------------- # pooling replicates survData_Cd_DR <- doseResponse(survData_Cd, target.time = 21, pool.replicate = TRUE) ## ----plot_DoseResponse-------------------------------------------------------- plot(survData_Cd_DR) ## ----plot_DoseResponseNoLegend------------------------------------------------ # removing the legend plot(survData_Cd_DR, addlegend = FALSE) ## ----plot_DoseResponseTT------------------------------------------------------ plot(survData_Cd_DR, target.time = 21, addlegend = TRUE) ## ----step4, results="hide", cache = TRUE-------------------------------------- survFit_Cd <- fit(survData_Cd, target.time = 21) ## ----summary_survFit_Cd------------------------------------------------------- summary(survFit_Cd) ## ----LCxBin------------------------------------------------------------------- LCx_Cd <- xcx(survFit_Cd, x = c(10, 20, 30, 40, 50)) LCx_Cd$quantiles ## ----LCxBinDistribution------------------------------------------------------- head(LCx_Cd$distribution) ## ----plotLCxBin--------------------------------------------------------------- plot(LCx_Cd) ## ----step4plot, warning=FALSE------------------------------------------------- plot(survFit_Cd, log.scale = TRUE, adddata = TRUE, addlegend = TRUE) ## ----wrongTT, results="hide", cache = TRUE------------------------------------ data("cadmium1") doubtful_fit <- fit(binaryData(cadmium1), target.time = 21) ## ----wrongTTplot, warning=FALSE----------------------------------------------- plot(doubtful_fit, log.scale = TRUE, adddata = TRUE, addlegend = TRUE) ## ----step5TT, results="hide"-------------------------------------------------- survFit_Cd_PPC <- ppc(survFit_Cd) ## ----plotSurvPPC-------------------------------------------------------------- plot(survFit_Cd_PPC) ## ----summarySurvPPC----------------------------------------------------------- summary(survFit_Cd_PPC) ## ----pp_survCd---------------------------------------------------------------- Cd_PP <- priorPosterior(survFit_Cd) plot(Cd_PP) ## ----ggpairs------------------------------------------------------------------ library(GGally) Cd_posterior <- posterior(survFit_Cd) ggpairs(Cd_posterior) ## ----DIC---------------------------------------------------------------------- library(rjags) fit <- survFit_Cd model <- rjags::jags.model(file = textConnection(fit$model.specification$model.text), data = fit$jags.data, n.chains = length(fit$mcmc), n.adapt = 3000) n_iter <- nrow(fit$mcmc[[1]]) dic.samples(model, n.iter = n_iter) ## ----WAIC--------------------------------------------------------------------- load.module("dic") jags.samples(model, c("deviance", "WAIC"), type = "mean", n.iter = n_iter, thin = 10) ## ----countData---------------------------------------------------------------- # (1) load dataset data(cadmium2) # (2) check structure and integrity of the dataset countDataCheck(cadmium2) # (3) create a `reproData` object dat <- countData(cadmium2) head(dat) ## ----countDatam--------------------------------------------------------------- # (3) create a `reproData` object dat <- modelData(cadmium2, type = 'count') head(dat) ## ----countData_plt------------------------------------------------------------ # (4) represent the cumulated number of offspring as a function of time plot(dat, concentration = 124, addlegend = TRUE, pool.replicate = FALSE) ## ----countData_DR------------------------------------------------------------- # (5) represent the reproduction rate as a function of concentration dat_DR <- doseResponse(dat, target.time = 28) plot(dat_DR) ## ----bestFit, cache = TRUE---------------------------------------------------- # (7) fit a concentration-effect model at target-time reproFit <- fit(dat, stoc.part = "bestfit", target.time = 21, quiet = TRUE) summary(reproFit) ## ----ECx_count---------------------------------------------------------------- # (8) Get ECx estimates ECx_count <- xcx(reproFit, x = c(10, 20, 30, 40, 50)) ECx_count$quantiles ## ----plotReproduction, warning=FALSE------------------------------------------ # (9) Plot the fit plot(reproFit, log.scale = TRUE, adddata = TRUE, addlegend = TRUE) ## ----plotReproPPC------------------------------------------------------------- # (10) PPC plot ppcReproFit <- ppc(reproFit) plot(ppcReproFit) ## ----summaryReproduction------------------------------------------------------ summary(reproFit) ## ----reproData---------------------------------------------------------------- dat <- countData(cadmium2) plot(binaryData(dat)) ## ----summaryReproPPC---------------------------------------------------------- ppcReproFit <- ppc(reproFit) summary(ppcReproFit) ## ----plotPPCrepro------------------------------------------------------------- plot(ppcReproFit) ## ----growthData--------------------------------------------------------------- data("cadmium_daphnia") gCdd <- continuousData(cadmium_daphnia) head(gCdd) ## ----growthDataModel---------------------------------------------------------- # Equivalent to the above line gCdd <- modelData(cadmium_daphnia, type = "continuous") head(gCdd) ## ----growthDataCheck---------------------------------------------------------- continuousDataCheck(cadmium_daphnia) ## ----plotGrowthData----------------------------------------------------------- plot(gCdd) ## ----plotGrowthDataConc------------------------------------------------------- plot(gCdd, concentration = 25) ## ----plotGrowthDataNoLegend--------------------------------------------------- plot(gCdd, addlegend = TRUE) ## ----DoseResponse------------------------------------------------------------- gCdd_DR <- doseResponse(gCdd) plot(gCdd_DR) ## ----DoseResponseLogScaled---------------------------------------------------- plot(gCdd_DR, log.scale = TRUE) ## ----DoseResponseTT----------------------------------------------------------- gCdd_DRTT <- doseResponse(gCdd, target.time = 7) plot(gCdd_DRTT) ## ----growthFit, cache = TRUE-------------------------------------------------- fit_gCdd <- fit(gCdd) ## ----plotGrowthFit------------------------------------------------------------ plot(fit_gCdd, adddata = TRUE) ## ----growthPPC---------------------------------------------------------------- # First calculate the PPC coordinates of the the predictions ppc_gCdd <- ppc(fit_gCdd) ## ----plot_growthPPC----------------------------------------------------------- # Plot the PPC plot(ppc_gCdd) ## ----summaryGrowthPPC--------------------------------------------------------- summary(ppc_gCdd) ## ----xcx_ContinuousFitTT------------------------------------------------------ XCX_gCdd <- xcx(fit_gCdd, x = 50) XCX_gCdd$quantiles ## ----xcx_ContinuousFitTT_plot------------------------------------------------- plot(XCX_gCdd)