Package 'konfound'

May 28, 2025

Type Package

Title Quantify the Robustness of Causal Inferences

Version 1.0.3

Description Statistical methods that quantify the conditions necessary to alter inferences, also known as sensitivity analysis, are becoming increasingly important to a variety of quantitative sciences. A series of recent works, including Frank (2000)

<doi:10.1177/0049124100029002001> and Frank et al. (2013)
<doi:10.3102/0162373713493129> extend previous sensitivity analyses by considering the characteristics of omitted variables or unobserved cases that would change an inference if such variables or cases were observed. These analyses generate statements such as ``an omitted variable would have to be correlated at xx with the predictor of interest (e.g., the treatment) and outcome to invalidate an inference of a treatment effect". Or ``one would have to replace pp percent of the observed data with nor which the treatment had no effect to invalidate the inference".

We implement these recent developments of sensitivity analysis and provide modules to calculate these two robustness indices and generate such statements in R. In particular, the functions konfound(), pkonfound() and mkonfound() allow users to calculate the robustness of inferences for a user's own model, a single published study and multiple studies respectively.

License MIT + file LICENSE

URL https://github.com/konfound-project/konfound,
 https://konfound-it.org/konfound/

BugReports https://github.com/konfound-project/konfound/issues **Depends** R (>= 3.5.0)

Imports broom, broom.mixed, crayon, dplyr, ggplot2, lavaan, purrr, rlang, tidyr, lme4 (>= 1.1-35.1), tibble, ggrepel, pbkrtest, ppcor

Suggests covr, devtools, forcats, knitr, rmarkdown, mice, roxygen2, testthat, Matrix (>= 1.6-2)

2 Contents

VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no
Author Joshua M Rosenberg [aut, cre],
Ran Xu [ctb],
Qinyun Lin [ctb],
Spiro Maroulis [ctb],
Sarah Narvaiz [ctb],
Kenneth A Frank [ctb],
Wei Wang [ctb],
Yunhe Cui [ctb],
Gaofei Zhang [ctb],
Xuesen Cheng [ctb],
JiHoon Choi [ctb],
Guan Saw [ctb]
Maintainer Joshua M Rosenberg <jmrosen48@gmail.com></jmrosen48@gmail.com>
Repository CRAN
Date/Publication 2025-05-28 20:30:09 UTC

Contents

nary_dummy_data	 3
l_delta_star	 3
l_rxy	 4
l_rxz	 5
l_ryz	 5
isq_p	 6
oncord1	 6
vt_kr_df	 7
onfound	 7
onfound_glm	 9
onfound_glm_dichotomous	 9
onfound_lm	 10
onfound_lmer	 11
konfound	 12
konfound_ex	 13
ıtput_df	 13
ıtput_print	 14
ıtput_table	 16
confound	 16
ot_correlation	 22
ot_threshold	 22
onfound	23

binary_dummy_data 3

```
      tkonfound_fig
      24

      verify_reg_Gzcv
      25

      verify_reg_uncond
      25

      zzz
      26

      Index
      27
```

 $\verb|binary_dummy_data|$

Binary dummy data

Description

This data is made-up data for use in examples.

Format

A data.frame with 107 rows and 3 variables.

cal_delta_star

Calculate delta star for sensitivity analysis

Description

Calculate delta star for sensitivity analysis

```
cal_delta_star(
  FR2max,
  R2,
  R2_uncond,
  est_eff,
  eff_thr,
  var_x,
  var_y,
  est_uncond,
  rxz,
  n_obs
)
```

4 cal_rxy

Arguments

FR2max maximum R2 R2 current R2

 $\begin{array}{lll} \text{R2_uncond} & \text{unconditional R2} \\ \text{est_eff} & \text{estimated effect} \\ \text{eff_thr} & \text{effect threshold} \\ \text{var_x} & \text{variance of X} \\ \text{var_y} & \text{variance of Y} \\ \end{array}$

est_uncond unconditional estimate

rxz correlation coefficient between X and Z

n_obs number of observations

Value

delta star value

cal_rxy

Calculate rxy based on ryxGz, rxz, and ryz

Description

Calculate rxy based on ryxGz, rxz, and ryz

Usage

```
cal_rxy(ryxGz, rxz, ryz)
```

Arguments

ryxGz correlation coefficient between Y and X given Z

rxz correlation coefficient between X and Z ryz correlation coefficient between Y and Z

Value

rxy value

cal_rxz 5

cal_rxz

Calculate R2xz based on variances and standard error

Description

Calculate R2xz based on variances and standard error

Usage

```
cal_rxz(var_x, var_y, R2, df, std_err)
```

Arguments

var_x variance of X var_y variance of Y

R2 coefficient of determination

df degrees of freedom

std_err standard error

Value

R2xz value

cal_ryz

Calculate R2yz based on ryxGz and R2

Description

Calculate R2yz based on ryxGz and R2

Usage

```
cal_ryz(ryxGz, R2)
```

Arguments

 $\hbox{ryxGz} \qquad \qquad \hbox{correlation coefficient between Y and X given Z}$

R2 coefficient of determination

Value

R2yz value

6 concord1

chisq_p

Perform a Chi-Square Test

Description

'chisq_p' calculates the p-value for a chi-square test given a contingency table.

Usage

```
chisq_p(a, b, c, d)
```

Arguments

a	Frequency count for row 1, column 1.
b	Frequency count for row 1, column 2.
С	Frequency count for row 2, column 1.
d	Frequency count for row 2, column 2.

Value

P-value from the chi-square test.

concord1

Concord1 data

Description

This data is from Hamilton (1983)

Format

A data.frame with 496 rows and 10 variables.

References

Hamilton, Lawrence C. 1983. Saving water: A causal model of household conservation. Sociological Perspectives 26(4):355-374.

get_kr_df 7

get_kr_df

Extract Degrees of Freedom for Fixed Effects in a Linear Mixed-Effects Model

Description

Extract Degrees of Freedom for Fixed Effects in a Linear Mixed-Effects Model

Usage

```
get_kr_df(model_object)
```

Arguments

model_object The mixed-effects model object produced by lme4::lmer.

Value

A vector containing degrees of freedom for the fixed effects in the model.

konfound

Konfound Analysis for Various Model Types

Description

Performs sensitivity analysis on fitted models including linear models ('lm'), generalized linear models ('glm'), and linear mixed-effects models ('lmerMod'). It calculates the amount of bias required to invalidate or sustain an inference, and the impact of an omitted variable necessary to affect the inference.

```
konfound(
  model_object,
  tested_variable,
  alpha = 0.05,
  tails = 2,
  index = "RIR",
  to_return = "print",
  two_by_two = FALSE,
  n_treat = NULL,
  switch_trm = TRUE,
  replace = "control"
)
```

Arguments

model_object A model object produced by 'lm', 'glm', or 'lme4::lmer'. tested variable Variable associated with the coefficient to be tested. alpha Significance level for hypothesis testing. tails Number of tails for the test (1 or 2). Type of sensitivity analysis ('RIR' by default). index Type of output to return ('print', 'raw_output', 'table'). to_return Boolean; if 'TRUE', uses a 2x2 table approach for 'glm' dichotomous variables. two_by_two Number of treatment cases (used only if 'two_by_two' is 'TRUE'). n_treat switch_trm Boolean; switch treatment and control in the analysis. replace Replacement method for treatment cases ('control' by default).

Value

Depending on 'to_return', prints the result, returns a raw output, or a summary table.

Examples

```
# using lm() for linear models
m1 <- lm(mpg ~ wt + hp, data = mtcars)
konfound(m1, wt)
konfound(m1, wt, to_return = "table")
# using glm() for non-linear models
if (requireNamespace("forcats")) {
 d <- forcats::gss_cat</pre>
 d$married <- ifelse(d$marital == "Married", 1, 0)</pre>
 m2 <- glm(married ~ age, data = d, family = binomial(link = "logit"))</pre>
 konfound(m2, age)
}
# using lme4 for mixed effects (or multi-level) models
if (requireNamespace("lme4")) {
 library(lme4)
 m3 <- fm1 <- lme4::lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
 konfound(m3, Days)
}
m4 <- glm(outcome ~ condition, data = binary_dummy_data, family = binomial(link = "logit"))</pre>
konfound(m4, condition, two_by_two = TRUE, n_treat = 55)
```

konfound_glm 9

konfound_glm

Konfound Analysis for Generalized Linear Models

Description

This function performs konfound analysis on a generalized linear model object. It uses 'broom' to tidy model outputs and calculates the sensitivity of inferences. It supports analysis for a single variable or multiple variables.

Usage

```
konfound_glm(
  model_object,
  tested_variable_string,
  alpha,
  tails,
  index = "RIR",
  to_return
)
```

Arguments

tested_variable_string

The name of the variable being tested.

alpha Significance level for hypothesis testing.

tails Number of tails for the test (1 or 2).

index Type of sensitivity analysis ('RIR' by default).

to_return The type of output to return.

Value

The results of the konfound analysis for the specified variable(s).

konfound_glm_dichotomous

Konfound Analysis for Generalized Linear Models with Dichotomous Outcomes

Description

This function performs konfound analysis on a generalized linear model object with a dichotomous outcome. It uses 'broom' to tidy model outputs and calculates the sensitivity of inferences.

10 konfound_lm

Usage

```
konfound_glm_dichotomous(
  model_object,
  tested_variable_string,
  alpha,
  tails,
  to_return,
  n_treat,
  switch_trm,
  replace
)
```

Arguments

model_object The model object produced by glm.

tested_variable_string
The name of the variable being tested.

alpha Significance level for hypothesis testing.

tails Number of tails for the test (1 or 2).

to_return The type of output to return.

n_treat Number of treatment cases.

switch_trm Term to switch for sensitivity analysis.

Value

The results of the konfound analysis.

konfound_lm

replace

Konfound Analysis for Linear Models

Boolean indicating whether to replace cases or not.

Description

This function performs konfound analysis on a linear model object produced by lm. It calculates the sensitivity of inferences for coefficients in the model. It supports analysis for a single variable or multiple variables.

```
konfound_lm(
  model_object,
  tested_variable_string,
  alpha,
  tails,
  index,
  to_return
)
```

konfound_lmer 11

Arguments

```
model_object The linear model object produced by lm.

tested_variable_string
The name of the variable being tested.

alpha Significance level for hypothesis testing.

tails Number of tails for the test (1 or 2).

index Type of sensitivity analysis ('RIR' by default).

to_return The type of output to return.
```

Value

The results of the konfound analysis for the specified variable(s).

konfound_lmer

Konfound Analysis for Linear Mixed-Effects Models

Description

This function performs konfound analysis on a linear mixed-effects model object produced by lme4::lmer. It calculates the sensitivity of inferences for fixed effects in the model. It supports analysis for a single variable or multiple variables.

Usage

```
konfound_lmer(
  model_object,
  tested_variable_string,
  test_all,
  alpha,
  tails,
  index,
  to_return
)
```

Arguments

```
model_object The mixed-effects model object produced by lme4::lmer.

tested_variable_string
The name of the fixed effect being tested.

test_all Boolean indicating whether to test all fixed effects or not.

alpha Significance level for hypothesis testing.

tails Number of tails for the test (1 or 2).

index Type of sensitivity analysis ('RIR' by default).

to_return The type of output to return.
```

12 mkonfound

Value

The results of the konfound analysis for the specified fixed effect(s).

mkonfound	Meta-Analysis and Sensitivity Analysis for Multiple Studies	

Description

Performs sensitivity analysis for multiple models, where parameters are stored in a data frame. It calculates the amount of bias required to invalidate or sustain an inference for each case in the data frame.

Usage

```
mkonfound(d, t, df, alpha = 0.05, tails = 2, return_plot = FALSE)
```

Arguments

d	A data frame or tibble containing t-statistics and associated degrees of freedom.
t	Column name or vector of t-statistics.
df	Column name or vector of degrees of freedom associated with t-statistics.
alpha	Significance level for hypothesis testing.
tails	Number of tails for the test (1 or 2).
return_plot	Whether to return a plot of the percent bias (default is 'FALSE').

Value

Depending on 'return_plot', either returns a data frame with analysis results or a plot.

Examples

```
## Not run:
mkonfound_ex
str(d)
mkonfound(mkonfound_ex, t, df)
## End(Not run)
```

mkonfound_ex 13

 $mkonfound_ex$

Example data for the mkonfound function

Description

A dataset containing t and df values from example studies from Educational Evaluation and Policy Analysis (as detailed in Frank et al., 2013): https://drive.google.com/file/d/1aGhxGjvMvEPVAgOA8rrxvA97uUO5TTMe/vio

Usage

```
mkonfound_ex
```

Format

A data frame with 30 rows and 2 variables:

t t value

df degrees of freedom associated with the t value ...

Source

https://drive.google.com/file/d/1aGhxGjvMvEPVAgOA8rrxvA97uUO5TTMe/view

output_df

Output data frame based on model estimates and thresholds

Description

Output data frame based on model estimates and thresholds

```
output_df(
   est_eff,
   beta_threshhold,
   unstd_beta,
   bias = NULL,
   sustain = NULL,
   recase,
   obs_r,
   critical_r,
   r_con,
   itcv,
   non_linear
)
```

14 output_print

Arguments

est_eff estimated effect beta_threshhold

threshold for beta

unstd_beta unstandardized beta value
bias bias to change inference
sustain sustain to change inference
recase number of cases to replace null

obs_r observed correlation critical_r critical correlation

r_con correlation for omitted variable

itcv inferential threshold for confounding variable

non_linear flag for non-linear models

Value

data frame with model information

output_print

Output printed text with formatting

Description

This function outputs printed text for various indices such as RIR (Robustness of Inference to Replacement) and IT (Impact Threshold for a Confounding Variable) with specific formatting like bold, underline, and italic using functions from the crayon package. It handles different scenarios based on the effect difference, beta threshold, and other parameters, providing formatted output for each case.

```
output_print(
   n_covariates,
   est_eff,
   beta_threshhold,
   bias = NULL,
   sustain = NULL,
   nu,
   eff_thr,
   recase,
   obs_r,
   critical_r,
   r_con,
   itcv,
```

output_print 15

```
alpha,
index,
far_bound,
sdx = NA,
sdy = NA,
R2 = NA,
rxcv = NA,
rycv = NA,
rycvGz,
tycvGz,
benchmark_corr_product = NA,
itcv_ratio_to_benchmark = NA
```

Arguments

n_covariates number of covariates.
est eff The estimated effect.

beta_threshhold

The threshold value of beta, used for statistical significance determination.

bias The percentage of the estimate that could be due to bias (optional).

sustain The percentage of the estimate necessary to sustain an inference (optional).

nu The hypothesized effect size used in replacement analysis.

eff_thr Threshold for estimated effect.

recase The number of cases that need to be replaced to change the inference.

obs_r The observed correlation coefficient in the data.

critical_r The critical correlation coefficient for statistical significance.

r_con The correlation coefficient of an omitted variable with both the outcome and the

predictor.

itcv The impact threshold for a confounding variable.

alpha The level of statistical significance.

index A character string indicating the index for which the output is generated ('RIR'

or 'IT').

far_bound Indicator whether the threshold is towards the other side of nu or 0, by default is

zero (same side), alternative is one (the other side).

sdx Standard deviation of x. sdy Standard deviation of y.

R2 the unadjusted, original R2 in the observed function.

rxcv the correlation between x and CV.
rycv the correlation between y and CV.

rxcvGz the correlation between predictor of interest and CV necessary to nullify the

inference for smallest impact, conditioning on all observed covariates.

rycvGz

the correlation between outcome and CV necessary to nullify the inference for smallest impact, conditioning on all observed covariates.

benchmark_corr_product

the product of the correlations of covariates Z with X and Y (Rxz * Ryz), measuring the observed association strength.

itcv_ratio_to_benchmark

the ratio of the ITCV to the benchmark_corr_product, indicating the robustness of inference.

output_table

Output a Tidy Table from a Model Object

Description

This function takes a model object and the tested variable, tidies the model output using 'broom::tidy', calculates the impact threshold for confounding variables (ITCV) and impact for each covariate, and returns a rounded, tidy table of model outputs.

Usage

```
output_table(model_object, tested_variable)
```

Arguments

model_object A model object from which to generate the output.
tested_variable

The variable being tested in the model.

Value

A tidy data frame containing model outputs, ITCV, and impacts for covariates.

pkonfound

Perform sensitivity analysis for published studies

Description

For published studies, this command calculates (1) how much bias there must be in an estimate to nullify/sustain an inference; (2) the impact of an omitted variable necessary to nullify/sustain an inference for a regression coefficient. For a full description of the command's usage and additional examples, please refer to our practical guide.

Usage

```
pkonfound(
 est_eff,
  std_err,
  n_obs,
  n_covariates = 1,
  alpha = 0.05,
  tails = 2,
  index = "RIR",
  nu = 0,
  n_treat = NULL,
  switch_trm = TRUE,
 model_type = "ols",
 a = NULL,
 b = NULL,
  c = NULL,
  d = NULL,
  two_by_two_table = NULL,
  test = "fisher",
  replace = "control",
  sdx = NA,
  sdy = NA,
 R2 = NA,
  far_bound = 0,
  eff_{thr} = NA,
  FR2max = 0,
  FR2max_multiplier = 1.3,
  to_return = "print",
  upper_bound = NULL,
 lower_bound = NULL,
  raw_treatment_success = NULL
)
```

Arguments

est_eff	the estimated effect (e.g., an unstandardized beta coefficient or a group mean difference).
std_err	the standard error of the estimate of the unstandardized regression coefficient.
n_obs	the number of observations in the sample.
n_covariates	the number of covariates in the regression model.
alpha	the probability of rejecting the null hypothesis (defaults to 0.05).
tails	integer indicating if the test is one-tailed (1) or two-tailed (2; defaults to 2).
index	specifies whether output is RIR or IT (impact threshold); defaults to "RIR".
nu	specifies the hypothesis to be tested; defaults to testing whether ${\tt est_eff}$ is significantly different from 0.

pkonfound pkonfound

n_treat	the number of cases associated with the treatment condition (for logistic regression models).	
switch_trm	indicates whether to switch the treatment and control cases; defaults to FALSE.	
model_type	the type of model; defaults to "ols", but can be set to "logistic".	
а	the number of cases in the control group showing unsuccessful results ($2x2$ table model).	
b	the number of cases in the control group showing successful results ($2x2$ table model).	
С	the number of cases in the treatment group showing unsuccessful results ($2x2$ table model).	
d	the number of cases in the treatment group showing successful results ($2x2$ table model).	
two_by_two_tabl		
	a table (matrix, data.frame, tibble, etc.) from which a, b, c, and d can be extracted.	
test	specifies whether to use Fisher's Exact Test ("fisher") or a chi-square test ("chisq"); defaults to "fisher".	
replace	specifies whether to use the entire sample ("entire") or the control group ("control") for calculating the base rate; default is "control".	
sdx	the standard deviation of X (used for unconditional ITCV).	
sdy	the standard deviation of Y (used for unconditional ITCV).	
R2	the unadjusted, original \mathbb{R}^2 in the observed function (used for unconditional ITCV).	
far_bound	indicates whether the estimated effect is moved to the boundary closer (0, default) or further away (1).	
eff_thr	for RIR: the unstandardized coefficient threshold to change an inference; for IT: the correlation defining the threshold for inference.	
FR2max	the largest R^2 (or $R^2_{\rm max})$ in the final model with an unobserved confounder (used for COP).	
FR2max_multipli		
	the multiplier applied to R^2 to derive R^2_{max} ; defaults to 1.3 (used for COP).	
to_return	specifies the output format: "print" (default) to display output, "plot" for a plot, or "raw_output" to return a data.frame for further analysis.	
upper_bound	optional (replaces est_eff); the upper bound of the confidence interval.	
lower_bound	optional (replaces est_eff); the lower bound of the confidence interval.	
raw_treatment_success		
	optional; the unadjusted count of successful outcomes in the treatment group for calculating the specific RIR benchmark.	

Details

The function accepts arguments depending on the type of model:

Linear Models (index: RIR, ITCV, PSE, COP)

- est_eff, std_err, n_obs, n_covariates, alpha, tails, index, nu
- sdx, sdy, R2, far_bound, eff_thr, FR2max, FR2max_multiplier
- upper_bound, lower_bound

Logistic Regression Model

- est_eff, std_err, n_obs, n_covariates, n_treat, alpha, tails, nu
- replace, switch_trm, raw_treatment_success, model_type

2x2 Table Model (Non-linear)

• a, b, c, d, two_by_two_table, test, replace, switch_trm

Values

pkonfound prints the bias and the number of cases that would have to be replaced with cases for which there is no effect to nullify the inference. If to_return = "raw_output", a list is returned with the following components:

RIR & ITCV for linear model:

obs_r correlation between predictor of interest (X) and outcome (Y) in the sample data

act_r correlation between predictor of interest (X) and outcome (Y) from the sample regression based on the t-ratio accounting for non-zero null hypothesis

critical_r critical correlation value at which the inference would be nullified (e.g., associated with p=.05)

r_final final correlation value given confounding variable (CV). Should be equal to critical_r

rxcv unconditional corr(X,CV) necessary to nullify the inference for smallest impact

rycv unconditional corr(Y, CV) necessary to nullify the inference for smallest impact

rxcvGz corr(X, CV|Z) conditioning on all observed covariates

rycvGz corr(Y, CV|Z) conditioning on all observed covariates

itcv unconditional ITCV (uncond_rxcv * uncond_rycv)

itcvGz conditional ITCV given all observed covariates

r2xz R^2 using all observed covariates to explain the predictor of interest (X)

r2yz R^2 using all observed covariates to explain the predictor of interest (Y)

beta_threshold threshold for for estimated effect

beta_threshold_verify verified threshold matching beta_threshold

perc_bias_to_change percent bias to change inference

RIR_primary Robustness of Inference to Replacement (RIR)

RIR_supplemental RIR for an extra row or column that is needed to nullify the inference

RIR_perc RIR as % of total sample (for linear regression) or as % of data points in the cell where replacement takes place (for logistic and 2 by 2 table)

Fig_ITCV ITCV plot object

Fig_RIR RIR threshold plot object

COP for linear model:

delta* delta calculated using Oster's unrestricted estimator

delta*restricted delta calculated using Oster's restricted estimator delta_exact delta calculated using correlation-based approach delta_pctbias percent bias when comparing delta* to delta_exact var(Y) variance of the dependent variable (σ_Y^2) var(X) variance of the independent variable (σ_X^2) var(CV) variance of the confounding variable (σ_{CV}^2) cor_oster correlation matrix implied by delta* cor_exact correlation matrix implied by delta_exact eff_x_M3_oster effect estimate for X under the Oster-PSE variant eff_x_M3 effect estimate for X under the PSE adjustment Table formatted results table Figure COP diagnostic plot

PSE for linear model:

corr(X,CV|Z) correlation between X and CV conditional on Z

corr(Y,CV|Z) correlation between Y and CV conditional on Z

corr(X,CV) correlation between X and CV

corr(Y,CV) correlation between X and CV

covariance matrix covariance matrix among Y, X, Z, and CV under the PSE adjustment eff_M3 estimated unstandardized regression coefficient for X in M3 under the PSE adjustment se_M3 standard error of that coefficient in M3 under the PSE adjustment

Table matrix summarizing key statistics from three nested regression models (M1, M2, M3)

RIR for logistic model:

RIR_primary Robustness of Inference to Replacement (RIR)

RIR_supplemental RIR for an extra row or column that is needed to nullify the inference

RIR_perc RIR as % of data points in the cell where replacement takes place

fragility_primary Fragility; the number of switches (e.g., treatment success to treatment failure) to nullify the inference

fragility_supplemental Fragility for an extra row or column that is needed to nullify the inference

starting_table observed (implied) 2 by 2 table before replacement and switching

final_table the 2 by 2 table after replacement and switching

user_SE user-entered standard error

analysis_SE the standard error used to generate a plausible 2 by 2 table

needtworows indicator whether extra switches were needed

RIR for 2×2 table model:

RIR_primary Robustness of Inference to Replacement (RIR)

RIR_supplemental RIR for an extra row or column that is needed to nullify the inference

RIR_perc RIR as % of data points in the cell where replacement takes place

fragility_primary Fragility; the number of switches (e.g., treatment success to treatment failure) to nullify the inference

fragility_supplemental Fragility for an extra row or column that is needed to nullify the
 inference
starting_table observed 2 by 2 table before replacement and switching
final_table the 2 by 2 table after replacement and switching
needtworows indicator whether extra switches were needed

Note

For a thoughtful background on benchmark options for ITCV, see doi:10.1111/rssb.12348 (Cinelli & Hazlett, 2020), doi:10.1177/01492063241293126 (Lonati & Wulff, 2024), and doi:10.1177/0049124100029002001 (Frank, 2000).

Examples

```
## Linear models
pkonfound(2, .4, 100, 3)
pkonfound(-2.2, .65, 200, 3)
pkonfound(.5, 3, 200, 3)
pkonfound(-0.2, 0.103, 20888, 3, n_treat = 17888, model_type = "logistic")
# using a confidence interval
pkonfound(upper_bound = 3, lower_bound = 1, n_obs = 100, n_covariates = 3)
pkonfound(2, .4, 100, 3, to_return = "thresh_plot")
pkonfound(2, .4, 100, 3, to_return = "corr_plot")
## Logistic regression model example
pkonfound(-0.2, 0.103, 20888, 3, n_treat = 17888, model_type = "logistic")
## 2x2 table examples
pkonfound(a = 35, b = 17, c = 17, d = 38)
pkonfound(a = 35, b = 17, c = 17, d = 38, alpha = 0.01)
pkonfound(a = 35, b = 17, c = 17, d = 38, alpha = 0.01, switch_trm = FALSE)
pkonfound(a = 35, b = 17, c = 17, d = 38, test = "chisq")
## Advanced examples
# Calculating unconditional ITCV and benchmark correlation for ITCV
pkonfound(est_eff = .5, std_err = .056, n_obs = 6174, sdx = 0.22, sdy = 1, R2 = .3,
          index = "IT", to_return = "print")
# Calculating delta* and delta_exact
pkonfound(est_eff = .4, std_err = .1, n_obs = 290, sdx = 2, sdy = 6, R2 = .7,
         eff_thr = 0, FR2max = .8, index = "COP", to_return = "raw_output")
# Calculating rxcv and rycv when preserving standard error
pkonfound(est\_eff = .5, std\_err = .056, n\_obs = 6174, eff\_thr = .1,
         sdx = 0.22, sdy = 1, R2 = .3, index = "PSE", to_return = "raw_output")
```

22 plot_threshold

plot_correlation

Plot Correlation Diagram

Description

This function creates a plot to illustrate the correlation between different variables, specifically focusing on the confounding variable, predictor of interest, and outcome. It uses ggplot2 for graphical representation.

Usage

```
plot_correlation(r_con, obs_r, critical_r)
```

Arguments

r_con Correlation coefficient related to the confounding variable.

obs_r Observed correlation coefficient.

critical_r Critical correlation coefficient for decision-making.

Value

A ggplot object representing the correlation diagram.

plot_threshold

Plot Effect Threshold Diagram

Description

This function creates a plot to illustrate the threshold of an effect estimate in relation to a specified beta threshold. It uses ggplot2 for graphical representation.

Usage

```
plot_threshold(beta_threshold, est_eff)
```

Arguments

```
beta_threshold The threshold value for the effect.
est_eff The estimated effect size.
```

Value

A ggplot object representing the effect threshold diagram.

tkonfound 23

tkonfound	Perform Sensitivity Analysis on 2x2 Tables	

Description

This function performs a sensitivity analysis on a 2x2 contingency table. It calculates the number of cases that need to be replaced to invalidate or sustain the statistical inference. The function also allows switching between treatment success and failure or control success and failure based on the provided parameters.

Usage

```
tkonfound(
    a,
    b,
    c,
    d,
    alpha = 0.05,
    switch_trm = TRUE,
    test = "fisher",
    replace = "control",
    to_return = to_return
)
```

Arguments

а	Number of unsuccessful cases in the control group.
b	Number of successful cases in the control group.
С	Number of unsuccessful cases in the treatment group.
d	Number of successful cases in the treatment group.
alpha	Significance level for the statistical test, default is 0.05.
switch_trm	Boolean indicating whether to switch treatment row cells, default is TRUE.
test	Type of statistical test to use, either "fisher" (default) or "chisq".
replace	Indicates whether to use the entire sample or the control group for base rate calculation, default is "control".
to return	Type of output to return, either "raw output" or "print".

Value

Returns detailed information about the sensitivity analysis, including the number of cases to be replaced (RIR), user-entered table, transfer table, and conclusions.

24 tkonfound_fig

tkonfound_fig

Draw Figures for Change in Effect Size in 2x2 Tables

Description

This function generates plots illustrating how the change in effect size is influenced by switching or replacing outcomes in a 2x2 table. It produces two plots: one showing all possibilities (switching) and another zoomed in the area for positive RIR (Relative Impact Ratio).

Usage

```
tkonfound_fig(
   a,
   b,
   c,
   d,
   thr_p = 0.05,
   switch_trm = TRUE,
   test = "fisher",
   replace = "control"
)
```

Arguments

а	Number of cases in the control group with unsuccessful outcomes.
b	Number of cases in the control group with successful outcomes.
С	Number of cases in the treatment group with unsuccessful outcomes.
d	Number of cases in the treatment group with successful outcomes.
thr_p	P-value threshold for statistical significance, default is 0.05.
switch_trm	Whether to switch the two cells in the treatment or control row, default is TRUE (treatment row).
test	Type of statistical test used, either "Fisher's Exact Test" (default) or "Chi-square test".
replace	Indicates whether to use the entire sample or just the control group for calculating the base rate, default is "control".

Value

Returns two plots showing the effect of hypothetical case switches on the effect size in a 2x2 table.

Examples

```
tkonfound_fig(14, 17, 6, 25, test = "chisq")
```

verify_reg_Gzcv 25

verify_reg_Gzcv	Verify regression model with control variable Z	
-----------------	---	--

Description

Verify regression model with control variable Z

Usage

```
verify_reg_Gzcv(n_obs, sdx, sdy, sdz, sdcv, rxy, rxz, rzy, rcvy, rcvx, rcvz)
```

Arguments

n_obs	number of observations
sdx	standard deviation of X
sdy	standard deviation of Y
sdz	standard deviation of Z
sdcv	sd between C and V
rxy	correlation coefficient between X and Y
rxz	correlation coefficient between X and Z
rzy	correlation coefficient between Z and Y
rcvy	correlation coefficient between V and Y
rcvx	correlation coefficient between \boldsymbol{V} and \boldsymbol{X}
rcvz	correlation coefficient between V and Z

Value

list of model parameters

Description

Verify unconditional regression model

```
verify_reg_uncond(n_obs, sdx, sdy, rxy)
```

26 zzz

Arguments

n_obs	number of observations
sdx	standard deviation of X
sdy	standard deviation of Y
	1-+:

rxy correlation coefficient between X and Y

Value

list of model parameters

zzz Package Initialization Functions and Utilities

Description

These functions are used for initializing the package environment and providing utility functions for the package.

Index

```
* datasets
    mkonfound_ex, 13
\verb|binary_dummy_data|, 3
cal_delta_star, 3
cal_rxy, 4
cal_rxz, 5
cal_ryz, 5
chisq_p, 6
concord1, 6
get_kr_df, 7
konfound, 7
konfound\_glm, \textcolor{red}{9}
\verb|konfound_glm_dichotomous|, 9
konfound_lm, 10
konfound_lmer, 11
mkonfound, 12
mkonfound_ex, 13
output_df, 13
output_print, 14
output_table, 16
pkonfound, 16
\verb|plot_correlation|, 22|
plot\_threshold, 22
tkonfound, 23
tkonfound_fig, 24
verify_reg_Gzcv, 25
verify_reg_uncond, 25
zzz, 26
```