## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = FALSE, comment = "", fig.width = 7, fig.height = 5 ) library(kDGLM) # devtools::load_all() ## ----eval=FALSE, include=TRUE------------------------------------------------- # Normal(mu, V = NA, Tau = NA, Sd = NA, data) ## ----------------------------------------------------------------------------- level <- polynomial_block(mu = 1, D = 0.95, order = 2) season <- harmonic_block(mu = 1, period = 12, D = 0.975) outcome <- Normal( mu = "mu", V = 6e-3, data = c(log(AirPassengers)) ) fitted.model <- fit_model(level, season, outcome) plot(fitted.model, plot.pkg = "base") ## ----eval=FALSE, include=TRUE------------------------------------------------- # Normal(mu, V = NA, Tau = NA, Sd = NA, data) ## ----------------------------------------------------------------------------- structure <- polynomial_block(mu = 1, D = 0.95) + polynomial_block(V = 1, D = 0.95) outcome <- Normal(mu = "mu", V = "V", data = cornWheat$corn.log.return[1:500]) fitted.model <- fit_model(structure, outcome) plot(fitted.model, plot.pkg = "base") ## ----results='hide'----------------------------------------------------------- # Bivariate Normal case structure <- (polynomial_block(mu = 1, D = 0.95) + polynomial_block(log.V = 1, D = 0.95)) * 2 + polynomial_block(atanh.rho = 1, D = 0.95) outcome <- Normal( mu = c("mu.1", "mu.2"), V = matrix(c("log.V.1", "atanh.rho", "atanh.rho", "log.V.2"), 2, 2), data = cornWheat[1:500, c(4, 5)] ) fitted.model <- fit_model(structure, outcome) ## ----results='hide'----------------------------------------------------------- plot(fitted.model, plot.pkg = "base") ## ----results='hide'----------------------------------------------------------- plot(fitted.model, linear.predictors = "atanh.rho", plot.pkg = "base") ## ----eval=FALSE, include=TRUE------------------------------------------------- # Poisson(lambda, data, offset = data^0) ## ----results='hide'----------------------------------------------------------- data <- c(AirPassengers) level <- polynomial_block(rate = 1, order = 2, D = 0.95) season <- harmonic_block(rate = 1, period = 12, order = 2, D = 0.975) outcome <- Poisson(lambda = "rate", data = data) fitted.data <- fit_model(level, season, AirPassengers = outcome ) plot(fitted.data, plot.pkg = "base") ## ----eval=FALSE, include=TRUE------------------------------------------------- # Gamma(phi = NA, mu = NA, alpha = NA, beta = NA, sigma = NA, data = , offset = data^0) ## ----results='hide'----------------------------------------------------------- structure <- polynomial_block(mu = 1, D = 0.95) Y <- (cornWheat$corn.log.return[1:500] - mean(cornWheat$corn.log.return[1:500]))**2 outcome <- Gamma(phi = 0.5, mu = "mu", data = Y) fitted.data <- fit_model(structure, outcome) plot(fitted.data, plot.pkg = "base") ## ----eval=FALSE, include=TRUE------------------------------------------------- # Multinom(p, data, offset = data^0) ## ----results='hide'----------------------------------------------------------- # Multinomial case structure <- ( polynomial_block(p = 1, order = 2, D = 0.95) + harmonic_block(p = 1, period = 12, D = 0.975) + noise_block(p = 1, R1 = 0.1) + regression_block(p = chickenPox$date >= as.Date("2013-09-01")) # Vaccine was introduced in September of 2013 ) * 4 outcome <- Multinom(p = structure$pred.names, data = chickenPox[, c(2, 3, 4, 6, 5)]) fitted.data <- fit_model(structure, chickenPox = outcome) summary(fitted.data) plot(fitted.data, plot.pkg = "base") ## ----eval=FALSE, include=TRUE------------------------------------------------- # structure <- polynomial_block(mu.1 = 1, mu.2 = 1, order = 2, D = 0.95) + # Common factor # harmonic_block(mu.2 = 1, period = 12, order = 2, D = 0.975) + # Seasonality for Series 2 # polynomial_block(mu.2 = 1, order = 1, D = 0.95) + # Local level for Series 2 # noise_block(mu = 1) * 2 # Overdispersion for both Series # # fitted.model <- fit_model(structure, # Adults = Poisson(lambda = "mu.1", data = chickenPox[, 5]), # Infants = Poisson(lambda = "mu.2", data = chickenPox[, 2]) # ) # # plot(fitted.model) ## ----------------------------------------------------------------------------- structure <- polynomial_block(mu = 1, order = 2, D = 0.95) + harmonic_block(mu = 1, period = 12, order = 2, D = 0.975) + noise_block(mu = 1) + polynomial_block(p = 1, D = 0.95) * 2 outcome1 <- Poisson(lambda = "mu", data = rowSums(chickenPox[, c(2, 3, 5)])) outcome2 <- Multinom(p = c("p.1", "p.2"), data = chickenPox[, c(2, 3, 5)]) fitted.model <- fit_model(structure, Total = outcome1, Proportions = outcome2) plot(fitted.model, plot.pkg = "base") ## ----eval=FALSE, include=FALSE------------------------------------------------ # rmarkdown::render("vignettes/vignette.Rmd")