## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE, fig.width=8, fig.height=5, warning = FALSE, message = FALSE) ## ----load packages------------------------------------------------------------ # # library(intSDM) # library(INLA) # ## ----initialize workflow------------------------------------------------------ # # proj <- '+proj=tmerc +lat_0=0 +lon_0=15 +k=0.9996 +datum=WGS84 +units=km +x_0=500 +y_0=0 +no_defs' # #proj <- '+proj=utm +zone=32 +datum=WGS84 +units=km +no_defs +type=crs' # # workflow <- startWorkflow( # Projection = proj, # Species = c("Fraxinus_excelsior", "Ulmus_glabra", "Arnica_montana"), # saveOptions = list(projectName = 'Vascular'), Save = FALSE # ) # ## ----addArea------------------------------------------------------------------ # # Norway <- fm_transform(giscoR::gisco_get_countries(country = 'Norway', resolution = 60), # proj) # Norway <- st_cast(st_as_sf(Norway), 'POLYGON') # Norway <- Norway[which.max(st_area(Norway)),] # Norway <- rmapshaper::ms_simplify(Norway, keep = 0.8) # Norway <- st_as_sf(fm_extensions(Norway, convex = c(10, 20))[[1]]) # # workflow$addArea(Object = Norway) # workflow$plot() # ## ----addGBIF------------------------------------------------------------------ # # workflow$addGBIF(datasetName = 'CZ', # datasetType = 'PO', # coordinateUncertaintyInMeters = '0,100', # limit = 10000, # datasetKey = 'b124e1e0-4755-430f-9eab-894f25a9b59c') # # workflow$addGBIF(datasetName = 'UiO', # datasetType = 'PA', # limit = 10000, # coordinateUncertaintyInMeters = '0,100', # generateAbsences = TRUE, # datasetKey = 'e45c7d91-81c6-4455-86e3-2965a5739b1f') # # workflow$addGBIF(datasetName = 'NTNU', # datasetType = 'PA', # limit = 10000, # coordinateUncertaintyInMeters = '0,100', # generateAbsences = TRUE, # datasetKey = 'd29d79fd-2dc4-4ef5-89b8-cdf66994de0d') # # workflow$plot(Species = TRUE) # ## ----addCovariates, eval = FALSE---------------------------------------------- # # workflow$addCovariates(worldClim = 'tavg', res = 2.5, Function = scale) # # workflow$addCovariates(landCover = 'grassland', Function = scale) # # workflow$plot(Covariates = TRUE) # ## ----metadata----------------------------------------------------------------- # # workflow$obtainMeta() # ## ----INLA--------------------------------------------------------------------- # # workflow$addMesh(cutoff = 20 * 0.5, # max.edge = c(60, 180) * 0.5, # offset= c(30, 250)) # # workflow$plot(Mesh = TRUE) # ## ----Priors------------------------------------------------------------------- # # workflow$specifySpatial(prior.range = c(200, 0.2), # prior.sigma = c(1, 0.01), constr = TRUE) # ## ----Fixed priors------------------------------------------------------------- # # workflow$specifyPriors(effectNames = 'Intercept', # Mean = 0, Precision = 1) # # workflow$specifyPriors('tavg', Mean = 0, Precision = 1) # # workflow$specifyPriors('grassland', Mean = 0, Precision = 1) # ## ----Bias--------------------------------------------------------------------- # # workflow$biasFields('CZ', # prior.range = c(200, 0.2), # prior.sigma = c(1, 0.01)) # ## ----specPrior---------------------------------------------------------------- # # workflow$specifyPriors(copyModel = list(beta = list(fixed = TRUE))) # ## ----options------------------------------------------------------------------ # # workflow$workflowOutput(c('Maps', 'Model', 'Bias')) # ## ----Maps--------------------------------------------------------------------- # # Maps <- sdmWorkflow(workflow,inlaOptions = list(num.threads = 1, # control.inla=list(int.strategy = 'ccd', # h = 1e-4, # cmin = 0, # control.vb=list(enable = FALSE)), # safe = TRUE, # verbose = TRUE, # inla.mode = 'experimental'), # predictionDim = c(400, 400), # ipointsOptions = list(method = 'direct')) ## ----MapsOut------------------------------------------------------------------ # # Maps$Fraxinus_excelsior$Maps # Maps$Ulmus_glabra$Maps # Maps$Arnica_montana$Maps # ## ----model Summaries---------------------------------------------------------- # # lapply(Maps, function(x) x$Model) #