## ----echo=FALSE, include=FALSE------------------------------------------------ library(heemod) ## ----define, include = FALSE-------------------------------------------------- param <- define_parameters( age_init = 60, sex = 0, # age increases with cycles age = age_init + model_time, # operative mortality rates omrPTHR = .02, omrRTHR = .02, # re-revision mortality rate rrr = .04, # parameters for calculating primary revision rate cons = -5.49094, ageC = -.0367, maleC = .768536, lambda = exp(cons + ageC * age_init + maleC * sex), gamma = 1.45367786, rrNP1 = .260677, # revision probability of primary procedure standardRR = 1 - exp(lambda * ((model_time - 1) ^ gamma - model_time ^ gamma)), np1RR = 1 - exp(lambda * rrNP1 * ((model_time - 1) ^ gamma - model_time ^ gamma)), # age-related mortality rate sex_cat = ifelse(sex == 0, "FMLE", "MLE"), mr = get_who_mr(age, sex_cat, local = TRUE), # state values u_SuccessP = .85, u_RevisionTHR = .30, u_SuccessR = .75, c_RevisionTHR = 5294 ) mat_standard <- define_transition( state_names = c( "PrimaryTHR", "SuccessP", "RevisionTHR", "SuccessR", "Death" ), 0, C, 0, 0, omrPTHR, 0, C, standardRR, 0, mr, 0, 0, 0, C, omrRTHR+mr, 0, 0, rrr, C, mr, 0, 0, 0, 0, 1 ) mat_np1 <- define_transition( state_names = c( "PrimaryTHR", "SuccessP", "RevisionTHR", "SuccessR", "Death" ), 0, C, 0, 0, omrPTHR, 0, C, np1RR, 0, mr, 0, 0, 0, C, omrRTHR+mr, 0, 0, rrr, C, mr, 0, 0, 0, 0, 1 ) mod_standard <- define_strategy( transition = mat_standard, PrimaryTHR = define_state( utility = 0, cost = 394 ), SuccessP = define_state( utility = discount(u_SuccessP, .015), cost = 0 ), RevisionTHR = define_state( utility = discount(u_RevisionTHR, .015), cost = discount(c_RevisionTHR, .06) ), SuccessR = define_state( utility = discount(u_SuccessR, .015), cost = 0 ), Death = define_state( utility = 0, cost = 0 ) ) mod_np1 <- define_strategy( transition = mat_np1, PrimaryTHR = define_state( utility = 0, cost = 579 ), SuccessP = define_state( utility = discount(u_SuccessP, .015), cost = 0 ), RevisionTHR = define_state( utility = discount(u_RevisionTHR, .015), cost = discount(c_RevisionTHR, .06) ), SuccessR = define_state( utility = discount(u_SuccessR, .015), cost = 0 ), Death = define_state( utility = 0, cost = 0 ) ) res_mod <- run_model( standard = mod_standard, np1 = mod_np1, parameters = param, cycles = 60, cost = cost, effect = utility, method = "beginning" ) ## ----get_counts, message=FALSE------------------------------------------------ library(dplyr) get_counts(res_mod) |> dplyr::filter(model_time == 20 & state_names == "RevisionTHR") ## ----extract_values----------------------------------------------------------- extract_values <- function(x) { dplyr::filter( get_counts(x), model_time == 20 & state_names == "RevisionTHR" )$count } extract_values(res_mod) ## ----define_calib_fn---------------------------------------------------------- calib_fn <- define_calibration_fn( type = "count", strategy_names = c("standard", "np1"), element_names = c("RevisionTHR", "RevisionTHR"), cycles = c(20, 20) ) calib_fn(res_mod) ## ----calibrate_no_init-------------------------------------------------------- res_cal <- calibrate_model( res_mod, parameter_names = c("gamma", "rrNP1"), fn_values = extract_values, target_values = c(2.5, 0.8) ) res_cal ## ----calibrate_init, eval = FALSE--------------------------------------------- # start <- data.frame( # gamma = c(1.0, 1.5, 2.0), # rrNP1 = c(0.2, 0.3, 0.4) # ) # # res_cal_2 <- calibrate_model( # res_mod, # parameter_names = c("gamma", "rrNP1"), # fn_values = extract_values, # target_values = c(3, 1), # initial_values = start, # lower = c(0, 0), upper = c(2, 1) # )