## ----chien-------------------------------------------------------------------- chien <- matrix(c(118, 832, 103, 884), dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE) ## ----chien-tab, echo=FALSE---------------------------------------------------- knitr::kable(chien) ## ----misclass_chien----------------------------------------------------------- library(episensr) seq_bias1 <- chien %>% misclass(., type = "exposure", bias_parms = c(24/(24+19), 18/(18+13), 144/(144+2), 130/(130+4))) seq_bias1 ## ----chien-tab-misclass------------------------------------------------------- seq_bias1$corr_data ## ----misclass_sel------------------------------------------------------------- seq_bias2 <- seq_bias1$corr_data %>% selection(., bias_parms = c(.734, .605, .816, .756)) seq_bias2 ## ----chien-tab-selection------------------------------------------------------ seq_bias2$corr_data ## ----misclass_sel_conf-------------------------------------------------------- seq_bias3 <- seq_bias2$corr_data %>% confounders(., type = "OR", bias_parms = c(.8, .299, .436)) seq_bias3 ## ----chien-tab-conf1---------------------------------------------------------- seq_bias3$cfder_data ## ----chien-tab-conf2---------------------------------------------------------- seq_bias3$nocfder_data ## ----multi_prob--------------------------------------------------------------- mod1 <- chien %>% probsens(., type = "exposure", seca = list("trapezoidal", c(.45, .5, .6, .65)), seexp = list("trapezoidal", c(.4, .48, .58, .63)), spca = list("trapezoidal", c(.95, .97, .99, 1)), spexp = list("trapezoidal", c(.96, .98, .99, 1)), corr_se = .8, corr_sp = .8) str(mod1) ## ----head_cells--------------------------------------------------------------- head(mod1$sim_df[, 5:8])