## ----probsens----------------------------------------------------------------- library(episensr) set.seed(123) smoke.nd <- probsens(matrix(c(215, 1449, 668, 4296), dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE), type = "exposure", reps = 50000, seca = list("uniform", c(.7, .95)), spca = list("uniform", c(.9, .99))) smoke.nd ## ----str---------------------------------------------------------------------- str(smoke.nd) ## ----plot, fig.cap = "Sensibility prior distribution.",fig.width=6,fig.height=4---- plot(smoke.nd, "seca") ## ----fig.cap='Log-normal distribution with meanlog = 2.159 and sdlog = 0.28.',fig.width=6,fig.height=4---- set.seed(123) x <- rlnorm(10000, meanlog = 2.159, sdlog = 0.28) quantile(x, c(0.025, 0.975)) plot(density(x)) ## ----probsens-conf------------------------------------------------------------ set.seed(123) greenland <- probsens_conf(matrix(c(45, 94, 257, 945), dimnames = list(c("Cases+", "Cases-"), c("Res+", "Res-")), nrow = 2, byrow = TRUE), reps = 50000, prev_exp = list("uniform", c(.4, .7)), prev_nexp = list("uniform", c(.4, .7)), risk = list("log-normal", c(2.159, .28))) greenland ## ----probsens_conf_plot, fig.cap='Distribution of the 50,000 confounder-adjusted odds ratios.',fig.width=6,fig.height=4---- plot(greenland, "rr_tot") ## ----probsens_forest_plot, fig.cap='Forest plot of odds ratios.',fig.width=6,fig.height=4---- plot(greenland, "forest_or") + theme_classic()