## ----setup, include=FALSE----------------------------------------------------- library(knitr) options(knitr.kable.NA = "") knitr::opts_chunk$set(comment = ">") options(digits = 3) set.seed(7) .eval_if_requireNamespace <- function(...) { pkgs <- c(...) knitr::opts_chunk$get("eval") && all(sapply(pkgs, requireNamespace, quietly = TRUE)) } ## ----------------------------------------------------------------------------- library(effectsize) options(es.use_symbols = TRUE) # get nice symbols when printing! (On Windows, requires R >= 4.2.0) ## ----------------------------------------------------------------------------- t.test(mpg ~ am, data = mtcars, var.equal = TRUE) cohens_d(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- hedges_g(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- t.test(mpg ~ am, data = mtcars, var.equal = FALSE) cohens_d(mpg ~ am, data = mtcars, pooled_sd = FALSE) hedges_g(mpg ~ am, data = mtcars, pooled_sd = FALSE) ## ----------------------------------------------------------------------------- glass_delta(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- t.test(mpg ~ am, data = mtcars, var.equal = TRUE, alternative = "less") cohens_d(mpg ~ am, data = mtcars, pooled_sd = TRUE, alternative = "less") ## ----------------------------------------------------------------------------- t.test(mtcars$wt, mu = 2.7) cohens_d(mtcars$wt, mu = 2.7) hedges_g(mtcars$wt, mu = 2.7) ## ----------------------------------------------------------------------------- sleep_wide <- datawizard::data_to_wide(sleep, id_cols = "ID", values_from = "extra", names_from = "group", names_prefix = "extra_" ) t.test(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], paired = TRUE) repeated_measures_d(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], method = "z") # same as: hedges_g(sleep_wide[["extra_1"]] - sleep_wide[["extra_2"]]) ## ----------------------------------------------------------------------------- repeated_measures_d(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]]) repeated_measures_d(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], method = "av") repeated_measures_d(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], method = "b") repeated_measures_d(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], method = "d") # all closer to: cohens_d(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], ci = NULL) ## ----------------------------------------------------------------------------- data("rouder2016") head(rouder2016) repeated_measures_d(rt ~ cond | id, data = rouder2016, method = "r") ## ----eval = .eval_if_requireNamespace("BayesFactor"), message=FALSE----------- library(BayesFactor) BFt <- ttestBF(formula = mpg ~ am, data = mtcars) effectsize(BFt, type = "d") ## ----------------------------------------------------------------------------- mahalanobis_d(mpg + hp + cyl ~ am, data = mtcars) ## ----------------------------------------------------------------------------- means_ratio(mpg ~ am, data = mtcars) ## ----warning=FALSE------------------------------------------------------------ A <- c(48, 48, 77, 86, 85, 85) B <- c(14, 34, 34, 77) wilcox.test(A, B, exact = FALSE) # aka Mann–Whitney U test rank_biserial(A, B) ## ----------------------------------------------------------------------------- x <- c(1.15, 0.88, 0.90, 0.74, 1.21, 1.36, 0.89) wilcox.test(x, mu = 1) # aka Signed-Rank test rank_biserial(x, mu = 1) ## ----------------------------------------------------------------------------- x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30) y <- c(0.88, 0.65, 0.60, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29) wilcox.test(x, y, paired = TRUE) # aka Signed-Rank test rank_biserial(x, y, paired = TRUE) ## ----------------------------------------------------------------------------- cohens_u1(mpg ~ am, data = mtcars) p_overlap(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- p_overlap(mpg ~ am, data = mtcars, parametric = FALSE) ## ----------------------------------------------------------------------------- p_superiority(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- cohens_u2(mpg ~ am, data = mtcars) cohens_u3(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- p_superiority(mpg ~ am, data = mtcars, parametric = FALSE) cohens_u2(mpg ~ am, data = mtcars, parametric = FALSE) cohens_u3(mpg ~ am, data = mtcars, parametric = FALSE) ## ----------------------------------------------------------------------------- p_superiority(mtcars$wt, mu = 2.75) p_superiority(mtcars$wt, mu = 2.75, parametric = FALSE) ## ----------------------------------------------------------------------------- p_superiority(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], paired = TRUE, mu = -1 ) p_superiority(sleep_wide[["extra_1"]], sleep_wide[["extra_2"]], paired = TRUE, mu = -1, parametric = FALSE ) ## ----eval = .eval_if_requireNamespace("BayesFactor")-------------------------- effectsize(BFt, type = "p_superiority") effectsize(BFt, type = "u1") effectsize(BFt, type = "u2") effectsize(BFt, type = "u3") effectsize(BFt, type = "overlap")