## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(effectsize) options(es.use_symbols = TRUE) # get nice symbols when printing! (On Windows, requires R >= 4.2.0) cohens_d(mpg ~ am, data = mtcars) ## ----------------------------------------------------------------------------- M <- rbind( c(150, 130, 35, 55), c(100, 50, 10, 40), c(165, 65, 2, 25) ) cramers_v(M) ## ----------------------------------------------------------------------------- model <- lm(mpg ~ cyl * am, data = mtcars ) datawizard::standardize(model) parameters::standardize_parameters(model) ## ----------------------------------------------------------------------------- model <- glm(am ~ cyl + hp, family = "binomial", data = mtcars ) parameters::standardize_parameters(model, exponentiate = TRUE) ## ----------------------------------------------------------------------------- options(contrasts = c("contr.sum", "contr.poly")) data("ChickWeight") # keep only complete cases and convert `Time` to a factor ChickWeight <- subset(ChickWeight, ave(weight, Chick, FUN = length) == 12) ChickWeight$Time <- factor(ChickWeight$Time) model <- aov(weight ~ Diet * Time + Error(Chick / Time), data = ChickWeight ) eta_squared(model, partial = TRUE) eta_squared(model, generalized = "Time") ## ----------------------------------------------------------------------------- F_to_eta2( f = c(40.72, 33.77), df = c(2, 1), df_error = c(18, 9) ) t_to_d(t = -5.14, df_error = 22) t_to_r(t = -5.14, df_error = 22) ## ----------------------------------------------------------------------------- data(hardlyworking, package = "effectsize") aov1 <- oneway.test(salary ~ n_comps, data = hardlyworking, var.equal = TRUE ) effectsize(aov1) xtab <- rbind(c(762, 327, 468), c(484, 239, 477), c(484, 239, 477)) Xsq <- chisq.test(xtab) effectsize(Xsq) ## ----------------------------------------------------------------------------- r_to_d(0.7) d_to_oddsratio(1.96) oddsratio_to_riskratio(34.99, p0 = 0.4) oddsratio_to_r(34.99) ## ----------------------------------------------------------------------------- interpret_cohens_d(c(0.02, 0.52, 0.86), rules = "cohen1988")