## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(warning = FALSE, message = FALSE, collapse = TRUE, comment = "#>", out.width = "100%", fig.height = 4, fig.width = 7, fig.align = "center") # only build vignettes locally and not for R CMD check knitr::opts_chunk$set(eval = nzchar(Sys.getenv("BUILD_VIGNETTES"))) ## ----access------------------------------------------------------------------- # library(dplyr) # library(sf) # library(terra) # library(ebirdst) # # # download a simplified example dataset for Yellow-bellied Sapsucker in Michigan # ebirdst_download_status(species = "yebsap-example", download_all = TRUE) ## ----species------------------------------------------------------------------ # glimpse(ebirdst_runs) ## ----review------------------------------------------------------------------- # ebirdst_runs |> # filter(species_code == "yebsap-example") |> # glimpse() ## ----types_weekly------------------------------------------------------------- # # weekly, 27km res, median relative abundance # abd_lr <- load_raster("yebsap-example", product = "abundance", # resolution = "27km") # # # weekly, 27km res, median proportion of population # prop_pop_lr <- load_raster("yebsap-example", product = "proportion-population", # resolution = "27km") # # # weekly, 27km res, abundance confidence intervals # abd_lower <- load_raster("yebsap-example", product = "abundance", metric = "lower", # resolution = "27km") # abd_upper <- load_raster("yebsap-example", product = "abundance", metric = "upper", # resolution = "27km") ## ----types_weekly_dates------------------------------------------------------- # as.Date(names(abd_lr)) ## ----types_seasonal----------------------------------------------------------- # # seasonal, 27km res, mean relative abundance # abd_seasonal_mean <- load_raster("yebsap-example", product = "abundance", # period = "seasonal", metric = "mean", # resolution = "27km") # # season that each layer corresponds to # names(abd_seasonal_mean) # # just the breeding season layer # abd_seasonal_mean[["breeding"]] # # # seasonal, 27km res, max occurrence # occ_seasonal_max <- load_raster("yebsap-example", product = "occurrence", # period = "seasonal", metric = "max", # resolution = "27km") ## ----types_fullyear----------------------------------------------------------- # # full year, 27km res, maximum relative abundance # abd_fy_max <- load_raster("yebsap-example", product = "abundance", # period = "full-year", metric = "max", # resolution = "27km") ## ----types_ranges------------------------------------------------------------- # # seasonal, 27km res, smoothed ranges # ranges <- load_ranges("yebsap-example", resolution = "27km") # ranges # # # subset to just the breeding season range using dplyr # range_breeding <- filter(ranges, season == "breeding") ## ----types_regional----------------------------------------------------------- # regional <- load_regional_stats("yebsap-example") # glimpse(regional) ## ----types_ppms--------------------------------------------------------------- # pr_auc <- load_ppm("yebsap-example", ppm = "occ_pr_auc_normalized") # print(pr_auc) ## ----types_ppms_plot---------------------------------------------------------- # plot(trim(pr_auc[[26]])) ## ----coverage_dl, eval=FALSE-------------------------------------------------- # ebirdst_download_data_coverage() ## ----coverage_load, echo=-1--------------------------------------------------- # par(mar = c(0, 0, 0, 0)) # site_sel <- load_data_coverage("selection-probability", week = "05-10") # plot(site_sel, axes = FALSE)