## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(ggplot2) ## ----------------------------------------------------------------------------- library(dlim) ## ----------------------------------------------------------------------------- data("ex_data") str(ex_data) ## ----------------------------------------------------------------------------- dlim_fit <- dlim(y = ex_data$y, x = ex_data$exposure, modifier = ex_data$modifier, z = ex_data$z, df_m = 10, df_l = 10) ## ----------------------------------------------------------------------------- dlim_fit ## ----------------------------------------------------------------------------- dlim_pred <- predict(dlim_fit, newdata = 0.5, type="CE") data.frame(cumul_betas = c(dlim_pred$est_dlim$betas_cumul), LB = c(dlim_pred$est_dlim$cumul_LB), UB = c(dlim_pred$est_dlim$cumul_UB)) ## ----------------------------------------------------------------------------- dlim_pred <- predict(dlim_fit, newdata = 0.5, type="DLF") data.frame(betas = c(dlim_pred$est_dlim$betas), LB = c(dlim_pred$est_dlim$LB), UB = c(dlim_pred$est_dlim$UB)) ## ----------------------------------------------------------------------------- plot_cumulative(new_modifiers = seq(0.1,0.9,0.1), mod_fit = dlim_fit, mod_name = "modifier") ## ----------------------------------------------------------------------------- plot_DLF(new_modifiers = seq(0.1,0.9,0.1), mod_fit = dlim_fit, mod_name = "modifier", plot_by = "time", time_pts = c(10,20,30)) ## ----------------------------------------------------------------------------- plot_DLF(new_modifiers = c(0.25, 0.5, 0.75), mod_fit = dlim_fit, mod_name = "modifier", plot_by = "modifier") ## ----------------------------------------------------------------------------- plot_DLF(new_modifiers = seq(0.1,0.9,0.1), mod_fit = dlim_fit, mod_name = "modifier", plot_by = "time", exposure_time = 10:46, time_pts = c(20, 30, 40)) ## ----------------------------------------------------------------------------- plot_DLF(new_modifiers = c(0.25, 0.5, 0.75), mod_fit = dlim_fit, mod_name = "modifier", plot_by = "modifier", exposure_time = 10:46) + xlab("months after parturition") ## ----------------------------------------------------------------------------- #predict dlim_pred <- predict(dlim_fit, newdata = seq(0.1, 0.9, 0.1)) #create data frame for plotting dlim_cumul_df <- data.frame(Estimate = c(dlim_pred$est_dlim$betas_cumul), LB = c(dlim_pred$est_dlim$cumul_LB), UB = c(dlim_pred$est_dlim$cumul_UB), Modifier = c(dlim_pred$est_dlim$modifiers)) #plotting ggplot(dlim_cumul_df, aes(x = Modifier, y = Estimate)) + geom_point(color = "blue") + geom_errorbar(aes(ymin=LB, ymax=UB)) + geom_hline(yintercept = 0, color = "black", size=1) + xlab("Modifier") + ylab("Change in response per unit of exposure") + ggtitle("Cumulative Effect Esimates") + theme_bw() ## ----------------------------------------------------------------------------- #predict new_mods <- c(0.25, 0.5, 0.75) dlim_pred <- predict(dlim_fit, newdata = c(0.25, 0.5, 0.75), type = "DLF") #create data frame for plotting dlim_pred_df <- data.frame(Estimate = c(t(dlim_pred$est_dlim$betas)), LB = c(t(dlim_pred$est_dlim$LB)), UB = c(t(dlim_pred$est_dlim$UB)), Week = rep(1:37,length(new_mods)), Modifier = rep(new_mods, each = 37)) #plotting ggplot(dlim_pred_df, aes(x = Week, y = Estimate)) + geom_point(color = "blue") + geom_errorbar(aes(ymin=LB, ymax=UB)) + geom_hline(yintercept = 0, color = "black", size=1) + facet_grid(cols = vars(Modifier), labeller = "label_both") + xlab("Exposure week") + ylab("Change in response per unit of exposure") + theme_bw() ## ----------------------------------------------------------------------------- model_comparison(fit = dlim_fit, null = "none", x = exposure, B = 5)