## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----first install, eval=FALSE, include=TRUE---------------------------------- # install.packages("colorhcplot") # library(colorhcplot) ## ----gooo, eval=TRUE, include=FALSE, echo=FALSE------------------------------- library(colorhcplot) ## ----first example, fig.align='center', fig.width=7.2, fig.height=4.5--------- data(USArrests) hc <- hclust(dist(USArrests), "ave") fac <- as.factor(c(rep("group 1", 10), rep("group 2", 10), rep("unknown", 30))) plot(hc) colorhcplot(hc, fac) colorhcplot(hc, fac, hang = -1, lab.cex = 0.8) ## ----second example, fig.align='center', fig.width=6.5, fig.height=4---------- data(UScitiesD) hcity.D2 <- hclust(UScitiesD, "ward.D2") fac.D2 <-as.factor(c(rep("group1", 3), rep("group2", 7))) plot(hcity.D2, hang=-1) colorhcplot(hcity.D2, fac.D2, color = c("chartreuse2", "orange2")) colorhcplot(hcity.D2, fac.D2, color = "gray30", lab.cex = 1.2, lab.mar = 0.75) ## ----thirs example, fig.align='center', fig.width=7, fig.height=4.5----------- data(geneData, package="colorhcplot") exprs <- geneData$exprs fac <- geneData$fac hc <- hclust(dist(t(exprs))) colorhcplot(hc, fac, main ="default", col = "gray10") colorhcplot(hc, fac, main="Control vs. Tumor Samples") ## ----session Info, fig.align='center', fig.width=7, fig.height=4.5------------ sessionInfo()