## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi = 80 ) ## ----setup-------------------------------------------------------------------- library(colocboost) ## ----LD-mismatch-------------------------------------------------------------- # Create a simulated dataset with LD mismatch data("Sumstat_5traits") data("Ind_5traits") LD <- get_cormat(Ind_5traits$X[[1]]) # Change sign of Z-score for 1% of variants for each trait by including mismatched LD set.seed(123) miss_prop <- 0.005 sumstat <- lapply(Sumstat_5traits$sumstat, function(ss){ p <- nrow(ss) pos_miss <- sample(1:p, ceiling(miss_prop * p)) ss$z[pos_miss] <- -ss$z[pos_miss] return(ss) }) ## ----LD-mismatch-runcode------------------------------------------------------ res <- colocboost(sumstat = sumstat, LD = LD) res$cos_details$cos$cos_index ## ----LD-mismatch-mpc_0-------------------------------------------------------- res$cos_details$cos_outcomes_npc ## ----LD-mismatch-one-iter----------------------------------------------------- # Perform only 1 iteration of gradient boosting with LD matrix res_mismatch <- colocboost(sumstat = sumstat, LD = LD, M = 1) ## ----LD-free------------------------------------------------------------------ res_free <- colocboost(sumstat = sumstat) ## ----hyprcoloc-compatible----------------------------------------------------- # Loading the Dataset data(Ind_5traits) X <- Ind_5traits$X Y <- Ind_5traits$Y # Coverting to HyPrColoc compatible format effect_est <- effect_se <- effect_n <- c() for (i in 1:length(X)){ x <- X[[i]] y <- Y[[i]] effect_n[i] <- length(y) output <- susieR::univariate_regression(X = x, y = y) effect_est <- cbind(effect_est, output$beta) effect_se <- cbind(effect_se, output$sebeta) } colnames(effect_est) <- colnames(effect_se) <- c("Y1", "Y2", "Y3", "Y4", "Y5") rownames(effect_est) <- rownames(effect_se) <- colnames(X[[1]]) # Run colocboost res <- colocboost(effect_est = effect_est, effect_se = effect_se, effect_n = effect_n) # Identified CoS res$cos_details$cos$cos_index