## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # library(devtools) # devtools::install_github("Kuan-Liu-Lab/causens") ## ----include=FALSE, message=FALSE, warning=FALSE------------------------------ library(causens) ## ----------------------------------------------------------------------------- # Simulate data data <- simulate_data( N = 10000, seed = 123, alpha_uz = 1, beta_uy = 1, treatment_effects = 1 ) # Treatment model is incorrect since U is "missing" causens_sf(Z ~ X.1 + X.2 + X.3, "Y", data = data, c1 = 0.25, c0 = 0.25)$estimated_ate ## ----------------------------------------------------------------------------- plot_causens(Z ~ X.1 + X.2 + X.3, data, "Y", c1_upper = 0.5, c1_lower = 0, r = 1, by = 0.01) ## ----eval = FALSE------------------------------------------------------------- # data <- simulate_data( # N = 1000, alpha_uz = 0.5, beta_uy = 0.2, # seed = 123, treatment_effects = 1, # y_type = "continuous" # ) # # bayesian_causens( # Z ~ X.1 + X.2 + X.3, Y ~ X.1 + X.2 + X.3, # U ~ X.1 + X.2 + X.3, data # ) ## ----------------------------------------------------------------------------- data <- simulate_data( N = 1000, alpha_uz = 0.2, beta_uy = 0.5, seed = 123, treatment_effects = 1, y_type = "binary", informative_u = FALSE ) causens_monte_carlo("Y", "Z", c("X.1", "X.2", "X.3"), data)$estimated_ate