--- title: "bbknnR Tutorial" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{bbknnR-tutorial} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} date: 'Compiled: `r Sys.Date()`' --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Setup library and data ```{r setup} library(bbknnR) library(Seurat) library(dplyr) library(patchwork) data("panc8_small") ``` ## Run BBKNN Note that `RunBBKNN()` also compute t-SNE and UMAP by default. ```{r runbbknn} panc8_small <- RunBBKNN(panc8_small, batch_key = "tech") ``` ## Find Clusters using bbknn graph ```{r clustering} panc8_small <- FindClusters(panc8_small, graph.name = "RNA_bbknn") ``` ## Visualization ```{r umap, fig.width=5, fig.height=10} p1 <- DimPlot(panc8_small, reduction = "umap", group.by = "celltype", label = TRUE, label.size = 3 , repel = TRUE) + NoLegend() p2 <- DimPlot(panc8_small, reduction = "umap", group.by = "tech") p3 <- DimPlot(panc8_small, reduction = "umap") wrap_plots(list(p1, p2, p3), ncol = 1) ``` ```{r tsne, fig.width=5, fig.height=10} p1 <- DimPlot(panc8_small, reduction = "tsne", group.by = "celltype", label = TRUE, label.size = 3 , repel = TRUE) + NoLegend() p2 <- DimPlot(panc8_small, reduction = "tsne", group.by = "tech") p3 <- DimPlot(panc8_small, reduction = "tsne") wrap_plots(list(p1, p2, p3), ncol = 1) ```