## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----setup-------------------------------------------------------------------- # library(abn) ## ----------------------------------------------------------------------------- # mydat <- ex1.dag.data # str(mydat) ## ----------------------------------------------------------------------------- # mydists <- list(b1="binomial", # p1="poisson", # g1="gaussian", # b2="binomial", # p2="poisson", # b3="binomial", # g2="gaussian", # b4="binomial", # b5="binomial", # g3="gaussian") ## ----------------------------------------------------------------------------- # # max.par <- list("b1"=1,"p1"=2,"g1"=3,"b2"=4,"p2"=1,"b3"=2,"g2"=3,"b4"=4,"b5"=1,"g3"=2) # set different max parents for each node # max.par <- 4 # set the same max parents for all nodes ## ----------------------------------------------------------------------------- # mycache <- buildScoreCache(data.df = mydat, # data.dists = mydists, # method = "bayes", # the default method is "bayes" # max.parents = max.par) ## ----------------------------------------------------------------------------- # mp.dag <- mostProbable(score.cache = mycache) ## ----------------------------------------------------------------------------- # plot(mp.dag) ## ----------------------------------------------------------------------------- # myfit <- fitAbn(object = mp.dag) ## ----------------------------------------------------------------------------- # summary(myfit) # plot(myfit) ## ----------------------------------------------------------------------------- # simdat <- simulateAbn(object = myfit, # n.iter = 10000L) # summary(simdat)