## ----eval = FALSE------------------------------------------------------------- # install.packages("UAHDataScienceUC") ## ----------------------------------------------------------------------------- # Load library library(UAHDataScienceUC) # Load data data(db5) # Create sample data data <- db5[1:10, ] ## ----------------------------------------------------------------------------- # Perform k-means clustering result <- kmeans_(data, centers = 3, max_iterations = 10) # Plot results plot(data, col = result$cluster, pch = 20) points(result$centers, col = 1:3, pch = 8, cex = 2) ## ----------------------------------------------------------------------------- # Perform hierarchical clustering result <- agglomerative_clustering( data, proximity = "single", distance_method = "euclidean", learn = TRUE ) ## ----------------------------------------------------------------------------- result <- dbscan( data, epsilon = 0.3, min_pts = 4, learn = TRUE ) ## ----------------------------------------------------------------------------- result <- gaussian_mixture( data, k = 3, max_iter = 100, learn = TRUE ) # Plot results with contours plot(data, col = result$cluster, pch = 20) ## ----------------------------------------------------------------------------- result <- genetic_kmeans( data, k = 3, population_size = 10, mut_probability = 0.5, max_generations = 10, learn = TRUE ) ## ----------------------------------------------------------------------------- # Create sample data data <- matrix(c(1,2,1,4,5,1,8,2,9,6,3,5,8,5,4), ncol=3) dataFrame <- data.frame(data) target <- c(1,2,3) weights <- c(0.1, 0.6, 0.3) # Perform correlation clustering result <- correlation_clustering( dataFrame, target = target, weight = weights, distance_method = "euclidean", normalize = TRUE, learn = TRUE ) ## ----------------------------------------------------------------------------- # Using different distance metrics agglomerative_clustering(data, distance_method = "euclidean") agglomerative_clustering(data, distance_method = "manhattan") agglomerative_clustering(data, distance_method = "canberra") agglomerative_clustering(data, distance_method = "chebyshev")