## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # remotes::install_github("wangziyue57/TaxNorm") ## ----eval = FALSE------------------------------------------------------------- # library(TaxaNorm) # # library(phyloseq) # # library(microbiome) # # library(ggplot2) # # library(vegan) # # library(MASS) ## ----eval = FALSE------------------------------------------------------------- # data("TaxaNorm_Example_Input", package = "TaxaNorm") # # # run normalization # TaxaNorm_Example_Output <- TaxaNorm_Normalization(data= TaxaNorm_Example_Input, # depth = NULL, # group = sample_data(TaxaNorm_Example_Input)$body_site, # meta.data = NULL, # filter.cell.num = 10, # filter.taxa.count = 0, # random = FALSE, # ncores = 1) # # # run diagnosis test # Diagnose_Data <- TaxaNorm_Run_Diagnose(Normalized_Results = TaxaNorm_Example_Output, prev = TRUE, equiv = TRUE, group = sample_data(TaxaNorm_Example_Input)$body_site) # # ## ----eval = FALSE------------------------------------------------------------- # data("TaxaNorm_Example_Input", package = "TaxaNorm") # ## ----eval = FALSE------------------------------------------------------------- # qc_data <- TaxaNorm_QC_Input(TaxaNorm_Example_Input) ## ----eval = FALSE------------------------------------------------------------- # filter.sample.num =1 # filter.taxa.count = 10 # taxaIn <- rowSums(abundances(TaxaNorm_Example_Input) > filter.taxa.count) > filter.sample.num # TaxaNorm_Example_Input <- prune_taxa(taxaIn, TaxaNorm_Example_Input) ## ----eval = FALSE------------------------------------------------------------- # taxaIn <- rowSums(abundances(TaxaNorm_Example_Input)) > 10 # TaxaNorm_Example_Input <- prune_taxa(taxaIn, TaxaNorm_Example_Input) ## ----eval = FALSE------------------------------------------------------------- # qc_data <- TaxNorm_QC_Input(TaxaNorm_Example_Input) ## ----eval = FALSE------------------------------------------------------------- # #Pick group from phyloseq object # group <- sample_data(TaxaNorm_Example_Input)$body_site # #Run Normalization function # Normalized_Data <- TaxaNorm_Normalization(data = TaxaNorm_Example_Input, # depth = NULL, # group = group, # filter.taxa.count = 0, # random = TRUE, # ncores = 1) # ## ----eval = FALSE------------------------------------------------------------- # # data("TaxaNorm_Example_Output", package = "TaxaNorm") # # # TaxaNorm_Model_QC(TaxaNormResults = TaxaNorm_Example_Output) ## ----eval = FALSE------------------------------------------------------------- # # TaxaNorm_NMDS(TaxaNormResults = TaxaNorm_Example_Output, group_column = "body_site") #