--- title: "Get started" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Get started} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Installation Install from CRAN: ```r install.packages("TCRconvertR") ``` ## Basic usage #### 1. Load TCRs into a data frame Examples of files you may want to load: - **10X**: `filtered_contig_annotations.csv` - **Adaptive**: `Sample_TCRB.tsv` - **IMGT**: Output from `MiXCR` or other tools ```{r} library(TCRconvertR) tcr_file <- get_example_path("tenx.csv") # Using built-in example file tcrs <- read.csv(tcr_file)[c("barcode", "v_gene", "j_gene", "cdr3")] tcrs ``` #### 2. Convert ```{r} new_tcrs <- convert_gene(tcrs, frm = "tenx", to = "adaptive") new_tcrs ``` > Tip: Suppress messages by setting `verbose = FALSE`. Warnings and errors will still appear. > Tip: If your Adaptive data lacks `x_resolved`/`xMaxResolved` columns, create them yourself by combining the `x_gene`/`xGeneName` and `x_allele`/`xGeneAllele` columns. See the FAQs. ## AIRR data Supply the standard AIRR gene column names to `frm_cols`: ```r new_airr <- convert_gene(airr, frm = "imgt", to = "adaptive", frm_cols = c('v_call', 'd_call', 'j_call', 'c_call')) ``` ## Custom column names By default, `TCRconvertR` assumes these column names based on the input nomenclature (`frm`): - `frm = 'imgt'` : `c('v_gene', 'd_gene', 'j_gene', 'c_gene')` - `frm = 'tenx'` : `c('v_gene', 'd_gene', 'j_gene', 'c_gene')` - `frm = 'adaptive'` : `c('v_resolved', 'd_resolved', 'j_resolved')` - `frm = 'adaptivev2'` : `c('vMaxResolved', 'dMaxResolved', 'jMaxResolved')` You can override these columns using `frm_cols`: **1. Load 10X data with custom column names** ```{r} custom_file <- get_example_path("customcols.csv") custom <- read.csv(custom_file) custom ``` **2. Specify names using `frm_cols` and convert to IMGT** ```{r} custom_new <- convert_gene( custom, frm = "tenx", to = "imgt", verbose = FALSE, frm_cols = c("myVgene", "myDgene", "myJgene", "myCgene"), ) custom_new ``` ## Rhesus or mouse data Use `species = "rhesus"` or `species = "mouse"` ```{r} new_tcrs <- convert_gene( tcrs, frm = "tenx", to = "imgt", species = "rhesus", # or 'mouse' verbose = FALSE ) new_tcrs ```