## ----setup, include=FALSE------------------------------------------------ knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE, fig.align = 'center', fig.width = 6, fig.height = 4, cache = FALSE) ## ---- include=FALSE------------------------------------------------------ library("bookdown") ## ------------------------------------------------------------------------ library("SimCorrMix") library("printr") options(scipen = 999) seed <- 276 n <- 10000 # Continuous variables L <- calc_theory("Logistic", c(0, 1)) C <- calc_theory("Chisq", 4) B <- calc_theory("Beta", c(4, 1.5)) # Non-mixture variables skews <- rep(L[3], 2) skurts <- rep(L[4], 2) fifths <- rep(L[5], 2) sixths <- rep(L[6], 2) Six <- list(1.75, 1.75) # Mixture variables mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5)) mix_mus <- list(c(-2, 2), c(L[1], C[1], B[1])) mix_sigmas <- list(c(1, 1), c(L[2], C[2], B[2])) mix_skews <- list(rep(0, 2), c(L[3], C[3], B[3])) mix_skurts <- list(rep(0, 2), c(L[4], C[4], B[4])) mix_fifths <- list(rep(0, 2), c(L[5], C[5], B[5])) mix_sixths <- list(rep(0, 2), c(L[6], C[6], B[6])) mix_Six <- list(list(NULL, NULL), list(1.75, NULL, 0.03)) Nstcum <- calc_mixmoments(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]], mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]]) Mstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]], mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]]) means <- c(L[1], L[1], Nstcum[1], Mstcum[1]) vars <- c(L[2]^2, L[2]^2, Nstcum[2]^2, Mstcum[2]^2) marginal <- list(0.3) support <- list(c(0, 1)) lam <- 0.5 p_zip <- 0.1 size <- 2 prob <- 0.75 mu <- size * (1 - prob)/prob p_zinb <- 0.2 k_cat <- length(marginal) k_cont <- length(Six) k_mix <- length(mix_pis) k_comp <- sum(unlist(lapply(mix_pis, length))) k_pois <- length(lam) k_nb <- length(size) k_total <- k_cat + k_cont + k_comp + k_pois + k_nb Rey <- matrix(0.35, k_total, k_total) diag(Rey) <- 1 rownames(Rey) <- colnames(Rey) <- c("O1", "C1", "C2", "M1_1", "M1_2", "M2_1", "M2_2", "M2_3", "P1", "NB1") Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"] <- 0 Rey["M2_1", "M2_2"] <- Rey["M2_2", "M2_1"] <- Rey["M2_1", "M2_3"] <- Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"] <- 0 ## ------------------------------------------------------------------------ validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial", means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support, lam, p_zip, size, prob, mu = NULL, p_zinb, rho = Rey) ## ------------------------------------------------------------------------ Lower_third <- calc_lower_skurt(method = "Fleishman", skews = C[3], Skurt = seq(1.161, 1.17, 0.001), seed = 104) knitr::kable(Lower_third$Min[, c("skew", "valid.pdf", "skurtosis")], row.names = FALSE, caption = "Third-Order Lower Skurtosis Bound") ## ------------------------------------------------------------------------ Lower_fifth <- calc_lower_skurt(method = "Polynomial", skews = C[3], fifths = C[5], sixths = C[6], Skurt = seq(0.022, 0.03, 0.001), seed = 104) knitr::kable(Lower_fifth$Min[, c("skew", "fifth", "sixth", "valid.pdf", "skurtosis")], row.names = FALSE, caption = "Fifth-Order Lower Skurtosis Bound") ## ------------------------------------------------------------------------ valid1 <- validcorr(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial", means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed) ## ------------------------------------------------------------------------ Sim1 <- corrvar(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial", means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support, lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed, epsilon = 0.01) ## ------------------------------------------------------------------------ Sum1 <- summary_var(Sim1$Y_cat, Sim1$Y_cont, Sim1$Y_comp, Sim1$Y_mix, Sim1$Y_pois, Sim1$Y_nb, means, vars, skews, skurts, fifths, sixths, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, marginal, lam, p_zip, size, prob, mu = NULL, p_zinb, Rey) Sim1_error <- abs(Rey - Sum1$rho_calc) ## ------------------------------------------------------------------------ summary(as.numeric(Sim1_error)) ## ------------------------------------------------------------------------ rho_mix <- Sum1$rho_mix rownames(rho_mix) <- c("01", "C1", "C2", "M1", "M2", "P1", "NB1") colnames(rho_mix) <- rownames(rho_mix) rho_mix ## ------------------------------------------------------------------------ p_M11M21 <- p_M11M22 <- p_M11M23 <- 0.35 p_M12M21 <- p_M12M22 <- p_M12M23 <- 0.35 p_M1M2 <- matrix(c(p_M11M21, p_M11M22, p_M11M23, p_M12M21, p_M12M22, p_M12M23), 2, 3, byrow = TRUE) rhoM1M2 <- rho_M1M2(mix_pis, mix_mus, mix_sigmas, p_M1M2) ## ------------------------------------------------------------------------ p_M11C1 <- p_M12C1 <- 0.35 p_M1C1 <- c(p_M11C1, p_M12C1) rho_M1C1 <- rho_M1Y(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]], p_M1C1) ## ------------------------------------------------------------------------ p_M21C1 <- p_M22C1 <- p_M23C1 <- 0.35 p_M2C1 <- c(p_M21C1, p_M22C1, p_M23C1) rho_M2C1 <- rho_M1Y(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]], p_M2C1) ## ------------------------------------------------------------------------ Sim1$valid.pdf Sim1$sixth_correction ## ------------------------------------------------------------------------ target_sum <- Sum1$target_sum cont_sum <- Sum1$cont_sum rownames(target_sum) <- rownames(cont_sum) <- c("C1", "C2", "M1_1", "M1_2", "M2_1", "M2_2", "M2_3") knitr::kable(target_sum, digits = 5, row.names = TRUE, caption = "Summary of Target Distributions") knitr::kable(cont_sum[, -c(2, 5:7)], digits = 5, row.names = TRUE, caption = "Summary of Simulated Distributions") ## ------------------------------------------------------------------------ target_mix <- Sum1$target_mix mix_sum <- Sum1$mix_sum rownames(target_mix) <- rownames(mix_sum) <- c("M1", "M2") knitr::kable(target_mix, digits = 5, row.names = TRUE, caption = "Summary of Target Distributions") knitr::kable(mix_sum[, -c(2, 5:7)], digits = 5, row.names = TRUE, caption = "Summary of Simulated Distributions") ## ------------------------------------------------------------------------ Nplot <- plot_simpdf_theory(sim_y = Sim1$Y_mix[, 1], ylower = -10, yupper = 10, title = "PDF of Mixture of N(-2, 1) and N(2, 1) Distributions", fx = function(x) mix_pis[[1]][1] * dnorm(x, mix_mus[[1]][1], mix_sigmas[[1]][1]) + mix_pis[[1]][2] * dnorm(x, mix_mus[[1]][2], mix_sigmas[[1]][2]), lower = -Inf, upper = Inf, sim_size = 0.5, target_size = 0.5) Nplot Mplot <- plot_simpdf_theory(sim_y = Sim1$Y_mix[, 2], title = paste("PDF of Mixture of Logistic(0, 1), Chisq(4),", "\nand Beta(4, 1.5) Distributions", sep = ""), fx = function(x) mix_pis[[2]][1] * dlogis(x, 0, 1) + mix_pis[[2]][2] * dchisq(x, 4) + mix_pis[[2]][3] * dbeta(x, 4, 1.5), lower = -Inf, upper = Inf, sim_size = 0.5, target_size = 0.5) Mplot ## ------------------------------------------------------------------------ knitr::kable(Sum1$ord_sum, caption = "Summary of Ordinal Variables") knitr::kable(Sum1$pois_sum[, -c(2, 9:11)], caption = "Summary of Poisson Variables") Pplot <- plot_simpdf_theory(sim_y = Sim1$Y_pois[, 1], title = "PMF of Zero-Inflated Poisson Distribution", Dist = "Poisson", params = c(lam, p_zip), cont_var = FALSE, col_width = 0.25) Pplot ## ------------------------------------------------------------------------ knitr::kable(Sum1$nb_sum[, -c(2, 10:12)], caption = "Summary of Negative Binomial Variables") NBplot <- plot_simtheory(sim_y = Sim1$Y_nb[, 1], title = "Simulated Zero-Inflated NB Values", binwidth = 0.5, Dist = "Negative_Binomial", params = c(size, mu, p_zinb), cont_var = FALSE) NBplot ## ------------------------------------------------------------------------ pois_eps <- 0.0001 nb_eps <- 0.0001 valid2 <- validcorr2(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial", means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, lam, p_zip, size, prob = NULL, mu, p_zinb, pois_eps, nb_eps, Rey, seed) ## ------------------------------------------------------------------------ Sim2 <- corrvar2(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial", means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support, lam, p_zip, size, prob = NULL, mu, p_zinb, pois_eps, nb_eps, Rey, seed, epsilon = 0.01) ## ------------------------------------------------------------------------ Sum2 <- summary_var(Sim2$Y_cat, Sim2$Y_cont, Sim2$Y_comp, Sim2$Y_mix, Sim2$Y_pois, Sim2$Y_nb, means, vars, skews, skurts, fifths, sixths, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, marginal, lam, p_zip, size, prob = NULL, mu, p_zinb, Rey) Sim2_error <- abs(Rey - Sum2$rho_calc) ## ------------------------------------------------------------------------ summary(as.numeric(Sim2_error)) ## ------------------------------------------------------------------------ rho_mix <- Sum2$rho_mix rownames(rho_mix) <- c("01", "C1", "C2", "M1", "M2", "P1", "NB1") colnames(rho_mix) <- rownames(rho_mix) rho_mix ## ------------------------------------------------------------------------ Sim2$valid.pdf Sim2$sixth_correction ## ------------------------------------------------------------------------ target_sum <- Sum2$target_sum cont_sum <- Sum2$cont_sum rownames(target_sum) <- rownames(cont_sum) <- c("C1", "C2", "M1_1", "M1_2", "M2_1", "M2_2", "M2_3") knitr::kable(target_sum, digits = 5, row.names = TRUE, caption = "Summary of Target Distributions") knitr::kable(cont_sum[, -c(2, 5:7)], digits = 5, row.names = TRUE, caption = "Summary of Simulated Distributions") ## ------------------------------------------------------------------------ target_mix <- Sum2$target_mix mix_sum <- Sum2$mix_sum rownames(target_mix) <- rownames(mix_sum) <- c("M1", "M2") knitr::kable(target_mix, digits = 5, row.names = TRUE, caption = "Summary of Target Distributions") knitr::kable(mix_sum[, -c(2, 5:7)], digits = 5, row.names = TRUE, caption = "Summary of Simulated Distributions") ## ------------------------------------------------------------------------ knitr::kable(Sum2$ord_sum, caption = "Summary of Ordinal Variables") knitr::kable(Sum2$pois_sum[, -c(2, 9:11)], caption = "Summary of Poisson Variables") ## ------------------------------------------------------------------------ knitr::kable(Sum2$nb_sum[, -c(2, 10:12)], caption = "Summary of Negative Binomial Variables")