## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----install, eval=FALSE, message=FALSE, warning=FALSE------------------------ # install.packages("SenSpe") ## ----snsp1m, eval=TRUE, message=FALSE, warning=FALSE-------------------------- library("SenSpe") ## simulate biomarkers of 100 cases and 100 controls set.seed(1234) n1 <- 100 n0 <- 100 mk <- c(rnorm(n1,1,1),rnorm(n0,0,1)) ## estimate specificity at controlled 0.95 sensitivity snsp1m(mk, n1=n1, s0=0.95) ## ----snsp2mp, eval=TRUE, message=FALSE, warning=FALSE------------------------- ## simulate paired biomarkers X and Y, with correlation 0.5, 100 cases and 100 controls n1 <- 100 n0 <- 100 rho <- 0.5 set.seed(1234) mkx <- rnorm(n1+n0,0,1) mky <- rho*mkx + sqrt(1-rho^2)*rnorm(n1+n0,0,1) mkx <- mkx + c(rep(2,n1),rep(0,n0)) mky <- mky + c(rep(1,n1),rep(0,n0)) mk <- rbind(mkx,mky) ## compare specificity at controlled 0.95 sensitivity snsp2mp(mk, 100, 0.95) ## ----snsp2mup, eval=TRUE, message=FALSE, warning=FALSE------------------------ set.seed(1234) ## simulate biomarker X with 100 cases and 100 controls mkx <- c(rnorm(100,2,1),rnorm(100,0,1)) ## simulate biomarker Y with 100 cases and 100 controls mky <- c(rnorm(100,1,1),rnorm(100,0,1)) ## compare specificity at controlled 0.95 sensitivity snsp2mup(mkx, 100, mky, 100, 0.95)