## ----setup, include = FALSE--------------------------------------------------- is_check <- ("CheckExEnv" %in% search()) || any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) || !file.exists("../models/CustomEnsembles/Bem_update1.RDS") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = !is_check, dev = "png" ) if(.Platform$OS.type == "windows"){ knitr::opts_chunk$set(dev.args = list(type = "cairo")) } ## ----include = FALSE, eval = FALSE-------------------------------------------- # # R package version updating # library(RoBMA) # # data("Bem2011", package = "RoBMA") # fit <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study, # priors_effect = NULL, priors_heterogeneity = NULL, priors_bias = NULL, # priors_effect_null = prior("spike", parameters = list(location = 0)), # priors_heterogeneity_null = prior("spike", parameters = list(location = 0)), # priors_bias_null = prior_none(), # seed = 1) # # fit <- update(fit, # prior_effect = prior("normal", parameters = list(mean = .15, sd = .10), truncation = list(lower = 0)), # prior_heterogeneity_null = prior("spike", parameters = list(location = 0)), # prior_bias_null = prior_none()) # saveRDS(fit, file = "../models/CustomEnsembles/Bem_update1.RDS") # # fit <- update(fit, # prior_effect = prior("normal", parameters = list(mean = .15, sd = .10), truncation = list(lower = 0)), # prior_heterogeneity = prior("invgamma", parameters = list(shape = 1, scale = .15)), # prior_bias_null = prior_none()) # fit <- update(fit, # prior_effect_null = prior("spike", parameters = list(location = 0)), # prior_heterogeneity_null = prior("spike", parameters = list(location = 0)), # prior_bias = prior_weightfunction("one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)))) # fit <- update(fit, # prior_effect_null = prior("spike", parameters = list(location = 0)), # prior_heterogeneity_null = prior("spike", parameters = list(location = 0)), # prior_bias = prior_weightfunction("one.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.05, 0.10)))) # fit <- update(fit, # prior_effect_null = prior("spike", parameters = list(location = 0)), # prior_heterogeneity_null = prior("spike", parameters = list(location = 0)), # prior_bias = prior_PET("Cauchy", parameters = list(0, 1), truncation = list(lower = 0))) # fit <- update(fit, # prior_effect_null = prior("spike", parameters = list(location = 0)), # prior_heterogeneity_null = prior("spike", parameters = list(location = 0)), # prior_bias = prior_PEESE("Cauchy", parameters = list(0, 5), truncation = list(lower = 0))) # saveRDS(fit, file = "../models/CustomEnsembles/Bem_update2.RDS") ## ----------------------------------------------------------------------------- library(RoBMA) data("Bem2011", package = "RoBMA") Bem2011 ## ----------------------------------------------------------------------------- fit <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study, priors_effect = NULL, priors_heterogeneity = NULL, priors_bias = NULL, priors_effect_null = prior("spike", parameters = list(location = 0)), priors_heterogeneity_null = prior("spike", parameters = list(location = 0)), priors_bias_null = prior_none(), seed = 1) ## ----------------------------------------------------------------------------- summary(fit, type = "models") ## ----fig_mu_prior, dpi = 300, fig.width = 4, fig.height = 3, out.width = "50%", fig.align = "center"---- plot(prior("normal", parameters = list(mean = .15, sd = .10), truncation = list(lower = 0))) ## ----include = FALSE---------------------------------------------------------- # these fits are relatively fast, but we reduce the knitting time considerably fit <- readRDS(file = "../models/CustomEnsembles/Bem_update1.RDS") ## ----------------------------------------------------------------------------- summary(fit, type = "models") ## ----include = FALSE---------------------------------------------------------- fit <- readRDS(file = "../models/CustomEnsembles/Bem_update2.RDS") ## ----------------------------------------------------------------------------- summary(fit, type = "models") ## ----------------------------------------------------------------------------- summary(fit) ## ----fig_mu_posterior, dpi = 300, fig.width = 4, fig.height = 3.5, out.width = "50%", fig.align = "center"---- plot(fit, parameter = "mu", prior = TRUE) ## ----fig_weightfunction_posterior, dpi = 300, fig.width = 5, fig.height = 4, out.width = "75%", fig.align = "center"---- plot(fit, parameter = "weightfunction", prior = TRUE) ## ----fig_PETPEESE_posterior, dpi = 300, fig.width = 5, fig.height = 4, out.width = "75%", fig.align = "center"---- plot(fit, parameter = "PET-PEESE", prior = TRUE)