## ---- results='hide', message=FALSE, warning=FALSE, echo=FALSE--------------- library(OptCirClust) library(ape) library(knitr) library(graphics) opar <- par(mar=c(0,0,2,0)) opts_chunk$set(fig.width=6, fig.height=4) Event <- "CG" K <- 14 # Seq <- read.GenBank("CP019943.1", as.character = TRUE)[[1]] file <- system.file("extdata", "CP019943.1.fasta", package = "OptCirClust") Seq <- ape::read.dna(file, format="fasta", as.matrix=FALSE, as.character = TRUE) Seq <- toupper(paste(Seq$`CP019943.1 Candidatus Carsonella ruddii strain BC chromosome, complete genome`, collapse = '')) V <- gregexpr(Event, Seq) O <- sort(V[[1]][1:length(V[[1]])]) Circumference <- nchar(Seq) set.seed(1) result <- CirClust(O, K, Circumference, method = "FOCC") plot(result, main = "Optimal circular clustering") # arrows(.58, - 1.75, 0.48, -1.45, length = 0.125, angle = 30, code = 2, col="orange", lwd=4) # arrows(0, -10, 0, 0, length = 0.125, angle = 30, code = 2, col="orange", lwd=4) arrows(0.167, -0.55, 0,-0.145, length = 0.125, angle = 30, code = 1, col="orange", lwd=4) result_km <- CirClust(O, K, Circumference, method = "HEUC") plot(result_km, main = "Heuristic circular clustering",) # arrows(.58, - 1.75, 0.4, -1.5, length = 0.125, angle = 30, code = 2, col="orange", lwd=4) arrows(0.135, -0.55, 0,-0.145, length = 0.125, angle = 30, code = 1, col="orange", lwd=4) par(opar)