## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----setup-------------------------------------------------------------------- # library(MUGS) ## ----load_data---------------------------------------------------------------- # # Load required data # data(S.1) # data(S.2) # data(X.group.source) # data(X.group.target) # data(U.1) # data(U.2) ## ----prepare_variables-------------------------------------------------------- # # Extract names and create name lists # names.list.1 <- rownames(S.1) # names.list.2 <- rownames(S.2) # full.name.list <- c(names.list.1, names.list.2) # # # Initialize beta matrix # beta.names.1 <- unique(c(colnames(X.group.source), colnames(X.group.target))) # beta.int <- matrix(0, 400, 10) # Replace with appropriate dimensions # rownames(beta.int) <- beta.names.1 ## ----run_function, eval=FALSE------------------------------------------------- # GroupEff_par.out <- GroupEff_par( # S.MGB = S.1, # S.BCH = S.2, # n.MGB = 2000, # n.BCH = 2000, # U.MGB = U.1, # U.BCH = U.2, # V.MGB = U.1, # V.BCH = U.2, # X.MGB.group = X.group.source, # X.BCH.group = X.group.target, # n.group = 400, # name.list = full.name.list, # beta.int = beta.int, # lambda = 0, # p = 10, # n.core = 2 # ) ## ----examine_output----------------------------------------------------------- # # View structure of the output # str(GroupEff_par.out) # # # Print specific components of the result # cat("\nEstimated Group Effects:\n") # print(GroupEff_par.out$effects[1:5, 1:3]) # Show the first 5 rows and 3 columns of effects # # cat("\nRegularization Path:\n") # print(GroupEff_par.out$path)