## ----include = FALSE, echo = FALSE-------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, include = FALSE--------------------------------------------------- library(MEAanalysis) library(tidyverse) knitr::opts_knit$set(root.dir = '..') ## ----warning = FALSE, message = FALSE----------------------------------------- help(package = "MEAanalysis") ## ----warning = FALSE, message = FALSE----------------------------------------- baseline_data <- create_synchrony_dataset( data_path = system.file("extdata", "input_neuralMetric.csv", package = "MEAanalysis"), heatmap_condition = "Baseline") # view first 10 lines of dataset head(baseline_data, 10) ## ----warning = FALSE, message = FALSE----------------------------------------- agonist_challenge_data <- create_synchrony_dataset( data_path = system.file("extdata", "comparison_agonist_challenge_neuralMetrics.csv", package = "MEAanalysis"), heatmap_condition = "Agonist Challenge") # view first 10 lines of dataset head(agonist_challenge_data, 10) ## ----------------------------------------------------------------------------- df_list <- list(baseline_data, agonist_challenge_data) heatmap_data <- df_list %>% reduce(full_join, by = 'Well') # view first 10 lines of dataset head(heatmap_data, 10) ## ----warning = FALSE, fig.height = 5, fig.width = 7--------------------------- p <- MEA_heatmap(data = heatmap_data, x_axis_title = "Experimental Condition", well_filter = "A1|A2|A3|A4|A5|A6|B1|B2|B3|B4|B5|B6|C1|C2|C3|C4|C5|C6|D1|D2|D3|D4|D5|D6") print(p) ## ----warning = FALSE, fig.height = 5, fig.width = 7--------------------------- p <- p + ggtitle("A heatmap to show the average synchrony index for an MEA well") print(p)