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AIBmix Agglomerative Information Bottleneck Clustering for Mixed-Type
Data

Description

The AIBmix function implements the Agglomerative Information Bottleneck (AIB) algorithm for
hierarchical clustering of datasets containing mixed-type variables, including categorical (nominal
and ordinal) and continuous variables. This method merges clusters so that information retention is
maximised at each step to create meaningful clusters, leveraging bandwidth parameters to handle
different categorical data types (nominal and ordinal) effectively (Slonim and Tishby 1999).

Usage

AIBmix(X, s = -1, lambda = -1,
scale = TRUE, contkernel = "gaussian",
nomkernel = "aitchisonaitken", ordkernel = "liracine",
cat_first = FALSE)

Arguments

X A data frame containing the data to be clustered. Variables should be of type
numeric (for continuous variables), factor (for nominal variables) or ordered
(for ordinal variables).

s A numeric value or vector specifying the bandwidth parameter(s) for continuous
variables. The values must be greater than 0. The default value is −1, which
enables the automatic selection of optimal bandwidth(s). Argument is ignored
when no variables are continuous.

lambda A numeric value or vector specifying the bandwidth parameter for categorical
variables. The default value is −1, which enables automatic determination of the
optimal bandwidth. For nominal variables and nomkernel = 'aitchisonaitken',
the maximum allowable value of lambda is (l−1)/l, where l represents the num-
ber of categories, whereas for nomkernel = 'liracine' the maximum allow-
able value is 1. For ordinal variables, the maximum allowable value of lambda
is 1, regardless of what ordkernel is being used. Argument is ignored when all
variables are continuous.

scale A logical value indicating whether the continuous variables should be scaled
to have unit variance before clustering. Defaults to TRUE. Argument is ignored
when all variables are categorical.
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contkernel Kernel used for continuous variables. Can be one of gaussian (default) or
epanechnikov. Argument is ignored when no variables are continuous.

nomkernel Kernel used for nominal (unordered categorical) variables. Can be one of aitchisonaitken
(default) or liracine. Argument is ignored when no variables are nominal.

ordkernel Kernel used for ordinal (ordered categorical) variables. Can be one of liracine
(default) or wangvanryzin. Argument is ignored when no variables are ordinal.

cat_first A logical value indicating whether bandwidth selection is prioritised for the cat-
egorical variables, instead of the continuous. Defaults to FALSE. Set to TRUE if
you suspect that the continuous variables are not informative of the cluster struc-
ture. Can only be TRUE when all bandwidths are selected automatically (i.e. s =
-1, lambda = -1).

Details

The AIBmix function produces a hierarchical agglomerative clustering of the data while retain-
ing maximal information about the original variable distributions. The Agglomerative Information
Bottleneck algorithm uses an information-theoretic criterion to merge clusters so that information
retention is maximised at each step, hence creating meaningful clusters with maximal informa-
tion about the original distribution. Bandwidth parameters for categorical (nominal, ordinal) and
continuous variables are adaptively determined if not provided. This process identifies stable and
interpretable cluster assignments by maximizing mutual information while controlling complexity.
The method is well-suited for datasets with mixed-type variables and integrates information from
all variable types effectively.

The following kernel functions can be used to estimate densities for the clustering procedure. For
continuous variables:

• Gaussian (RBF) kernel (Silverman 1998):

Kc
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x− x′

s
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• Epanechnikov kernel (Epanechnikov 1969):
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√
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s2 < 5

0, otherwise
, s > 0.

For nominal (unordered categorical variables):

• Aitchison & Aitken kernel (Aitchison and Aitken 1976):

Ku(x = x′;λ) =

{
1− λ, if x = x′

λ
ℓ−1 , otherwise

, 0 ≤ λ ≤ ℓ− 1

ℓ
.

• Li & Racine kernel (Ouyang et al. 2006):

Ku(x = x′;λ) =

{
1, if x = x′

λ, otherwise
, 0 ≤ λ ≤ 1.
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For ordinal (ordered categorical) variables:

• Li & Racine kernel (Li and Racine 2003):

Ko(x = x′; ν) =

{
1, if x = x′

ν|x−x′|, otherwise
, 0 ≤ ν ≤ 1.

• Wang & van Ryzin kernel (Wang and Van Ryzin 1981):

Ko(x = x′; ν) =

{
1− ν, if x = x′

1−ν
2 ν|x−x′|, otherwise

, 0 ≤ ν ≤ 1.

The bandwidth parameters s, λ, and ν control the smoothness of the density estimate and are au-
tomatically determined by the algorithm if not provided by the user using the approach in Costa et
al. (2025). ℓ is the number of levels of the categorical variable. For ordinal variables, the lambda
parameter of the function is used to define ν.

Value

An object of class "aibclust" representing the final clustering result. The returned object is a list
with the following components:

merges A data frame with 2 columns and n rows, showing which observations are
merged at each step.

merge_costs A numeric vector tracking the cost incurred by each merge I(Tm;Y )−I(Tm−1;Y ).

partitions A list containing n sub-lists. Each sub-list includes the cluster partition at each
step.

I_T_Y A numeric vector including the mutual information I(Tm;Y ) as the number of
clusters m increases.

I_X_Y A numeric value of the mutual information I(X;Y ) between observation in-
dices and location.

info_ret A numeric vector of length n including the fraction of the original information
retained after each merge.

s A numeric vector of bandwidth parameters used for the continuous variables. A
value of −1 is returned if all variables are categorical.

lambda A numeric vector of bandwidth parameters used for the categorical variables. A
value of −1 is returned if all variables are continuous.

call The matched call.

n Number of observations.

contcols Indices of continuous columns in X.

catcols Indices of categorical columns in X.

kernels List with names of kernels used for continuous, nominal, and ordinal features.

obs_names Names of rows in X; used for plotting the cluster hierarchy using a dendrogram.

Objects of class "aibclust" support the following methods:
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• print.aibclust: Display a concise description of the cluster hierarchy.

• summary.aibclust: Show detailed information including cluster sizes for 2, 3, and 5 clusters,
information-theoretic metrics, and hyperparameters.

• plot.aibclust: Produce diagnostic plots:

– type = "dendrogram": dendrogram visualising the hierarchy of partitions obtained.
– type = "info": information retention curve; the proportion of information preserved
I(Tm;Y )/I(X;Y ) by the clustering Tm is plotted against the number of clusters m.

Author(s)

Efthymios Costa, Ioanna Papatsouma, Angelos Markos

References

Slonim N, Tishby N (1999). “Agglomerative Information Bottleneck.” Advances in Neural Infor-
mation Processing Systems, 12.

Aitchison J, Aitken CG (1976). “Multivariate binary discrimination by the kernel method.” Biometrika,
63(3), 413–420.

Li Q, Racine J (2003). “Nonparametric estimation of distributions with categorical and continuous
data.” Journal of Multivariate Analysis, 86(2), 266–292.

Silverman BW (1998). Density Estimation for Statistics and Data Analysis (1st Ed.). Routledge.

Ouyang D, Li Q, Racine J (2006). “Cross-validation and the estimation of probability distributions
with categorical data.” Journal of Nonparametric Statistics, 18(1), 69–100.

Wang M, Van Ryzin J (1981). “A class of smooth estimators for discrete distributions.” Biometrika,
68(1), 301–309.

Epanechnikov VA (1969). “Non-parametric estimation of a multivariate probability density.” The-
ory of Probability & Its Applications, 14(1), 153–158.

Costa E, Papatsouma I, Markos A (2025). “A Deterministic Information Bottleneck Method for
Clustering Mixed-Type Data.” doi:10.48550/arXiv.2407.03389, arXiv:2407.03389, https://arxiv.
org/abs/2407.03389.

Examples

# Example dataset with categorical, ordinal, and continuous variables
set.seed(123)
data_mix <- data.frame(
cat_var = factor(sample(letters[1:3], 100, replace = TRUE)), # Nominal categorical variable
ord_var = factor(sample(c("low", "medium", "high"), 100, replace = TRUE),

levels = c("low", "medium", "high"),
ordered = TRUE), # Ordinal variable

cont_var1 = rnorm(100), # Continuous variable 1
cont_var2 = runif(100) # Continuous variable 2

)

# Perform Mixed-Type Hierarchical Clustering with Agglomerative IB
result_mix <- AIBmix(X = data_mix, lambda = -1, s = -1, scale = TRUE)

https://doi.org/10.48550/arXiv.2407.03389
https://arxiv.org/abs/2407.03389
https://arxiv.org/abs/2407.03389
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# Print clustering results
plot(result_mix, type = "dendrogram", xlab = "", sub = "", cex = 0.5) # Plot dendrogram
plot(result_mix, type = "info", col = "black", pch = 16) # Plot dendrogram

# Simulated categorical data example
set.seed(123)
data_cat <- data.frame(

Var1 = as.factor(sample(letters[1:3], 200, replace = TRUE)), # Nominal variable
Var2 = as.factor(sample(letters[4:6], 200, replace = TRUE)), # Nominal variable
Var3 = factor(sample(c("low", "medium", "high"), 200, replace = TRUE),

levels = c("low", "medium", "high"), ordered = TRUE) # Ordinal variable
)

# Run AIBmix with automatic lambda selection
result_cat <- AIBmix(X = data_cat, lambda = -1)

# Print clustering results
plot(result_cat, type = "dendrogram", xlab = "", sub = "", cex = 0.5) # Plot dendrogram

# Results summary
summary(result_cat)

# Simulated continuous data example
set.seed(123)
# Continuous data with 200 observations, 5 features
data_cont <- as.data.frame(matrix(rnorm(1000), ncol = 5))

# Run AIBmix with automatic bandwidth selection
result_cont <- AIBmix(X = data_cont, s = -1, scale = TRUE)

# Print concise summary ofoutput
print(result_cont)

# Print clustering results
plot(result_cont, type = "dendrogram", xlab = "", sub = "", cex = 0.5) # Plot dendrogram

DIBmix Deterministic Information Bottleneck Clustering for Mixed-Type Data

Description

The DIBmix function implements the Deterministic Information Bottleneck (DIB) algorithm for
clustering datasets containing continuous, categorical (nominal and ordinal), and mixed-type vari-
ables. This method optimizes an information-theoretic objective to preserve relevant information in
the cluster assignments while achieving effective data compression (Costa et al. 2025).

Usage

DIBmix(X, ncl, randinit = NULL,
s = -1, lambda = -1, scale = TRUE,
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maxiter = 100, nstart = 100,
contkernel = "gaussian",
nomkernel = "aitchisonaitken", ordkernel = "liracine",
cat_first = FALSE, verbose = FALSE)

Arguments

X A data frame containing the input data to be clustered. It should include cate-
gorical variables (factor for nominal and ordered for ordinal) and continuous
variables (numeric).

ncl An integer specifying the number of clusters.

randinit An optional vector specifying the initial cluster assignments. If NULL, cluster
assignments are initialized randomly.

s A numeric value or vector specifying the bandwidth parameter(s) for continuous
variables. The values must be greater than 0. The default value is −1, which
enables the automatic selection of optimal bandwidth(s). Argument is ignored
when no variables are continuous.

lambda A numeric value or vector specifying the bandwidth parameter for categorical
variables. The default value is −1, which enables automatic determination of the
optimal bandwidth. For nominal variables and nomkernel = 'aitchisonaitken',
the maximum allowable value of lambda is (l−1)/l, where l represents the num-
ber of categories, whereas for nomkernel = 'liracine' the maximum allow-
able value is 1. For ordinal variables, the maximum allowable value of lambda
is 1, regardless of what ordkernel is being used. Argument is ignored when all
variables are continuous.

scale A logical value indicating whether the continuous variables should be scaled
to have unit variance before clustering. Defaults to TRUE. Argument is ignored
when all variables are categorical.

maxiter The maximum number of iterations allowed for the clustering algorithm. De-
faults to 100.

nstart The number of random initializations to run. The best clustering solution is
returned. Defaults to 100.

contkernel Kernel used for continuous variables. Can be one of gaussian (default) or
epanechnikov. Argument is ignored when no variables are continuous.

nomkernel Kernel used for nominal (unordered categorical) variables. Can be one of aitchisonaitken
(default) or liracine. Argument is ignored when no variables are nominal.

ordkernel Kernel used for ordinal (ordered categorical) variables. Can be one of liracine
(default) or wangvanryzin. Argument is ignored when no variables are ordinal.

cat_first A logical value indicating whether bandwidth selection is prioritised for the cat-
egorical variables, instead of the continuous. Defaults to FALSE. Set to TRUE
if you suspect that the continuous variables are not informative of the cluster
structure. Can only be TRUE when data is of mixed-type and all bandwidths are
selected automatically (i.e. s = -1, lambda = -1).

verbose Logical. Defaults to FALSE to suppress progress messages. Change to TRUE to
print.
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Details

The DIBmix function clusters data while retaining maximal information about the original vari-
able distributions. The Deterministic Information Bottleneck algorithm optimizes an information-
theoretic objective that balances information preservation and compression. Bandwidth parameters
for categorical (nominal, ordinal) and continuous variables are adaptively determined if not pro-
vided. This iterative process identifies stable and interpretable cluster assignments by maximiz-
ing mutual information while controlling complexity. The method is well-suited for datasets with
mixed-type variables and integrates information from all variable types effectively.

The following kernel functions can be used to estimate densities for the clustering procedure. For
continuous variables:

• Gaussian (RBF) kernel (Silverman 1998):

Kc

(
x− x′

s

)
=

1√
2π

exp

{
− (x− x′)
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}
, s > 0.

• Epanechnikov kernel (Epanechnikov 1969):

Kc(x− x′; s) =

{
3

4
√
5

(
1− (x−x′)2

5s2

)
, if (x−x′)2

s2 < 5

0, otherwise
, s > 0.

For nominal (unordered categorical variables):

• Aitchison & Aitken kernel (Aitchison and Aitken 1976):

Ku(x = x′;λ) =

{
1− λ, if x = x′

λ
ℓ−1 , otherwise

, 0 ≤ λ ≤ ℓ− 1

ℓ
.

• Li & Racine kernel (Ouyang et al. 2006):

Ku(x = x′;λ) =

{
1, if x = x′

λ, otherwise
, 0 ≤ λ ≤ 1.

For ordinal (ordered categorical) variables:

• Li & Racine kernel (Li and Racine 2003):

Ko(x = x′; ν) =

{
1, if x = x′

ν|x−x′|, otherwise
, 0 ≤ ν ≤ 1.

• Wang & van Ryzin kernel (Wang and Van Ryzin 1981):

Ko(x = x′; ν) =

{
1− ν, if x = x′

1−ν
2 ν|x−x′|, otherwise

, 0 ≤ ν ≤ 1.

The bandwidth parameters s, λ, and ν control the smoothness of the density estimate and are au-
tomatically determined by the algorithm if not provided by the user using the approach in Costa et
al. (2025). ℓ is the number of levels of the categorical variable. For ordinal variables, the lambda
parameter of the function is used to define ν.
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Value

An object of class "gibclust" representing the final clustering result. The returned object is a list
with the following components:

Cluster An integer vector giving the cluster assignments for each data point.

Entropy A numeric value representing the entropy of the cluster assignments at conver-
gence.

CondEntropy A numeric value representing the conditional entropy of cluster assignment,
given the observation weights H(T | X).

MutualInfo A numeric value representing the mutual information, I(Y ;T ), between the
original labels (Y ) and the cluster assignments (T ).

InfoXT A numeric value representing the mutual information, I(X;T ), between the
original observations weights (X) and the cluster assignments (T ).

beta A numeric vector of the final beta values used in the iterative procedure.

alpha A numeric value of the strength of conditional entropy used, controlling fuzzi-
ness of the solution. This is by default equal to 0 for DIBmix.

s A numeric vector of bandwidth parameters used for the continuous variables. A
value of −1 is returned if all variables are categorical.

lambda A numeric vector of bandwidth parameters used for the categorical variables. A
value of −1 is returned if all variables are continuous.

call The matched call.

ncl Number of clusters.

n Number of observations.

iters Number of iterations used to obtain the returned solution.

converged Logical indicating whether convergence was reached before maxiter.

conv_tol Numeric convergence tolerance; by default 0 for DIBmix.

contcols Indices of continuous columns in X.

catcols Indices of categorical columns in X.

kernels List with names of kernels used for continuous, nominal, and ordinal features.

Objects of class "gibclust" support the following methods:

• print.gibclust: Display a concise description of the cluster assignment.

• summary.gibclust: Show detailed information including cluster sizes, information-theoretic
metrics, hyperparameters, and convergence details.

• plot.gibclust: Produce diagnostic plots:

– type = "sizes": barplot of cluster sizes or hardened sizes (IB/GIB).
– type = "info": barplot of entropy, conditional entropy, and mutual information.
– type = "beta": trajectory of log β over iterations (only available for hard clustering out-

puts obtained using DIBmix).

Author(s)

Efthymios Costa, Ioanna Papatsouma, Angelos Markos
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References

Costa E, Papatsouma I, Markos A (2025). “A Deterministic Information Bottleneck Method for
Clustering Mixed-Type Data.” doi:10.48550/arXiv.2407.03389, arXiv:2407.03389, https://arxiv.
org/abs/2407.03389.

Aitchison J, Aitken CG (1976). “Multivariate binary discrimination by the kernel method.” Biometrika,
63(3), 413–420.

Li Q, Racine J (2003). “Nonparametric estimation of distributions with categorical and continuous
data.” Journal of Multivariate Analysis, 86(2), 266–292.

Silverman BW (1998). Density Estimation for Statistics and Data Analysis (1st Ed.). Routledge.

Ouyang D, Li Q, Racine J (2006). “Cross-validation and the estimation of probability distributions
with categorical data.” Journal of Nonparametric Statistics, 18(1), 69–100.

Wang M, Van Ryzin J (1981). “A class of smooth estimators for discrete distributions.” Biometrika,
68(1), 301–309.

Epanechnikov VA (1969). “Non-parametric estimation of a multivariate probability density.” The-
ory of Probability & Its Applications, 14(1), 153–158.

Examples

# Example 1: Basic Mixed-Type Clustering
set.seed(123)

# Create a more realistic dataset with mixed variable types
data_mix <- data.frame(

# Categorical variables
education = factor(sample(c("High School", "Bachelor", "Master", "PhD"), 150,

replace = TRUE, prob = c(0.4, 0.3, 0.2, 0.1))),
employment = factor(sample(c("Full-time", "Part-time", "Unemployed"), 150,

replace = TRUE, prob = c(0.6, 0.25, 0.15))),

# Ordinal variable
satisfaction = factor(sample(c("Low", "Medium", "High"), 150, replace = TRUE),

levels = c("Low", "Medium", "High"), ordered = TRUE),

# Continuous variables
income = rlnorm(150, meanlog = 10, sdlog = 0.5), # Log-normal income
age = rnorm(150, mean = 35, sd = 10), # Normally distributed age
experience = rpois(150, lambda = 8) # Years of experience

)

# Perform Mixed-Type Clustering
result_mix <- DIBmix(X = data_mix, ncl = 3, nstart = 5)

# View results
print(paste("Number of clusters found:", length(unique(result_mix$Cluster))))
print(paste("Mutual Information:", round(result_mix$MutualInfo, 3)))
table(result_mix$Cluster)

# Example 2: Comparing cat_first parameter
# When categorical variables are more informative

https://doi.org/10.48550/arXiv.2407.03389
https://arxiv.org/abs/2407.03389
https://arxiv.org/abs/2407.03389
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result_cat_first <- DIBmix(X = data_mix, ncl = 3,
cat_first = TRUE, # Prioritize categorical variables
nstart = 5)

# When continuous variables are more informative (default)
result_cont_first <- DIBmix(X = data_mix, ncl = 3,

cat_first = FALSE,
nstart = 5)

# Compare clustering performance
if (requireNamespace("mclust", quietly = TRUE)){ # For adjustedRandIndex

print(paste("Agreement between approaches:",
round(mclust::adjustedRandIndex(result_cat_first$Cluster,

result_cont_first$Cluster), 3)))
}

plot(result_cat_first, type = "sizes") # Bar plot of cluster sizes
plot(result_cat_first, type = "info") # Information-theoretic quantities plot
plot(result_cat_first, type = "beta") # Plot of evolution of beta

# Simulated categorical data example
data_cat <- data.frame(

Var1 = as.factor(sample(letters[1:3], 200, replace = TRUE)), # Nominal variable
Var2 = as.factor(sample(letters[4:6], 200, replace = TRUE)), # Nominal variable
Var3 = factor(sample(c("low", "medium", "high"), 200, replace = TRUE),

levels = c("low", "medium", "high"), ordered = TRUE) # Ordinal variable
)

# Perform hard clustering on categorical data with Deterministic IB
result_cat <- DIBmix(X = data_cat, ncl = 3, lambda = -1, nstart = 5)

# Print clustering results
print(result_cat$Cluster) # Cluster assignments
print(result_cat$Entropy) # Final entropy
print(result_cat$MutualInfo) # Mutual information

# Simulated continuous data example
set.seed(123)
# Continuous data with 200 observations, 5 features
data_cont <- as.data.frame(matrix(rnorm(1000), ncol = 5))

# Perform hard clustering on continuous data with Deterministic IB
result_cont <- DIBmix(X = data_cont, ncl = 3, s = -1, nstart = 5)

# Print clustering results
print(result_cont$Cluster) # Cluster assignments
print(result_cont$Entropy) # Final entropy
print(result_cont$MutualInfo) # Mutual information

# Summary of output
print(result_cont)
summary(result_cont)
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GIBmix Generalised Information Bottleneck Clustering for Mixed-Type Data

Description

The GIBmix function implements the Generalised Information Bottleneck (GIB) algorithm for clus-
tering datasets containing continuous, categorical (nominal and ordinal), and mixed-type variables.
This method optimizes an information-theoretic objective to preserve relevant information in the
cluster assignments while achieving effective data compression (Strouse and Schwab 2017).

Usage

GIBmix(X, ncl, beta, alpha, randinit = NULL,
s = -1, lambda = -1, scale = TRUE,
maxiter = 100, nstart = 100,
conv_tol = 1e-5, contkernel = "gaussian",
nomkernel = "aitchisonaitken", ordkernel = "liracine",
cat_first = FALSE, verbose = FALSE)

Arguments

X A data frame containing the input data to be clustered. It should include cate-
gorical variables (factor for nominal and ordered for ordinal) and continuous
variables (numeric).

ncl An integer specifying the number of clusters.

beta Regularisation strength characterizing the tradeoff between compression and
relevance. Must be non-negative.

alpha Strength of conditional entropy term. Must be in the range [0, 1]. Setting alpha
= 0 calls the DIBmix function and ignores the value of beta, while alpha = 1
calls IBmix instead.

randinit An optional vector specifying the initial cluster assignments. If NULL, cluster
assignments are initialized randomly.

s A numeric value or vector specifying the bandwidth parameter(s) for continuous
variables. The values must be greater than 0. The default value is −1, which
enables the automatic selection of optimal bandwidth(s). Argument is ignored
when no variables are continuous.

lambda A numeric value or vector specifying the bandwidth parameter for categorical
variables. The default value is −1, which enables automatic determination of the
optimal bandwidth. For nominal variables and nomkernel = 'aitchisonaitken',
the maximum allowable value of lambda is (l−1)/l, where l represents the num-
ber of categories, whereas for nomkernel = 'liracine' the maximum allow-
able value is 1. For ordinal variables, the maximum allowable value of lambda
is 1, regardless of what ordkernel is being used. Argument is ignored when all
variables are continuous.
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scale A logical value indicating whether the continuous variables should be scaled
to have unit variance before clustering. Defaults to TRUE. Argument is ignored
when all variables are categorical.

maxiter The maximum number of iterations allowed for the clustering algorithm. De-
faults to 100.

nstart The number of random initializations to run. The best clustering solution is
returned. Defaults to 100.

conv_tol Convergence tolerance level; for a cluster membership matrix U (m) at iteration
m, convergence is achieved if

∑
i,j |U

m+1
i,j − Um

i,j | ≤ conv_tol. Must be in
range [0, 1]. Defaults to 1e-5.

contkernel Kernel used for continuous variables. Can be one of gaussian (default) or
epanechnikov. Argument is ignored when no variables are continuous.

nomkernel Kernel used for nominal (unordered categorical) variables. Can be one of aitchisonaitken
(default) or liracine. Argument is ignored when no variables are nominal.

ordkernel Kernel used for ordinal (ordered categorical) variables. Can be one of liracine
(default) or wangvanryzin. Argument is ignored when no variables are ordinal.

cat_first A logical value indicating whether bandwidth selection is prioritised for the cat-
egorical variables, instead of the continuous. Defaults to FALSE. Set to TRUE
if you suspect that the continuous variables are not informative of the cluster
structure. Can only be TRUE when data is of mixed-type and all bandwidths are
selected automatically (i.e. s = -1, lambda = -1).

verbose Logical. Defaults to FALSE to suppress progress messages. Change to TRUE to
print.

Details

The GIBmix function produces a fuzzy clustering of the data while retaining maximal information
about the original variable distributions. The Generalised Information Bottleneck algorithm opti-
mizes an information-theoretic objective that balances information preservation and compression.
Bandwidth parameters for categorical (nominal, ordinal) and continuous variables are adaptively
determined if not provided. This iterative process identifies stable and interpretable cluster assign-
ments by maximizing mutual information while controlling complexity. The method is well-suited
for datasets with mixed-type variables and integrates information from all variable types effectively.
Set α = 1 and α = 0 to recover the Information Bottleneck and its Deterministic variant, respec-
tively. If α = 0, the algorithm ignores the value of the regularisation parameter β.

The following kernel functions can be used to estimate densities for the clustering procedure. For
continuous variables:

• Gaussian (RBF) kernel (Silverman 1998):

Kc

(
x− x′

s

)
=

1√
2π

exp

{
− (x− x′)

2

2s2

}
, s > 0.

• Epanechnikov kernel (Epanechnikov 1969):

Kc(x− x′; s) =

{
3

4
√
5

(
1− (x−x′)2

5s2

)
, if (x−x′)2

s2 < 5

0, otherwise
, s > 0.
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For nominal (unordered categorical variables):

• Aitchison & Aitken kernel (Aitchison and Aitken 1976):

Ku(x = x′;λ) =

{
1− λ, if x = x′

λ
ℓ−1 , otherwise

, 0 ≤ λ ≤ ℓ− 1

ℓ
.

• Li & Racine kernel (Ouyang et al. 2006):

Ku(x = x′;λ) =

{
1, if x = x′

λ, otherwise
, 0 ≤ λ ≤ 1.

For ordinal (ordered categorical) variables:

• Li & Racine kernel (Li and Racine 2003):

Ko(x = x′; ν) =

{
1, if x = x′

ν|x−x′|, otherwise
, 0 ≤ ν ≤ 1.

• Wang & van Ryzin kernel (Wang and Van Ryzin 1981):

Ko(x = x′; ν) =

{
1− ν, if x = x′

1−ν
2 ν|x−x′|, otherwise

, 0 ≤ ν ≤ 1.

The bandwidth parameters s, λ, and ν control the smoothness of the density estimate and are au-
tomatically determined by the algorithm if not provided by the user using the approach in Costa et
al. (2025). ℓ is the number of levels of the categorical variable. For ordinal variables, the lambda
parameter of the function is used to define ν.

Value

An object of class "gibclust" representing the final clustering result. The returned object is a list
with the following components:

Cluster An integer vector giving the cluster assignments for each data point.

Entropy A numeric value representing the entropy of the cluster assignments at conver-
gence.

CondEntropy A numeric value representing the conditional entropy of cluster assignment,
given the observation weights H(T | X).

MutualInfo A numeric value representing the mutual information, I(Y ;T ), between the
original labels (Y ) and the cluster assignments (T ).

InfoXT A numeric value representing the mutual information, I(X;T ), between the
original observations weights (X) and the cluster assignments (T ).

beta A numeric vector of the final beta values used in the iterative procedure.

alpha A numeric value of the strength of conditional entropy used, controlling fuzzi-
ness of the solution. This is by default equal to 0 for DIBmix.
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s A numeric vector of bandwidth parameters used for the continuous variables. A
value of −1 is returned if all variables are categorical.

lambda A numeric vector of bandwidth parameters used for the categorical variables. A
value of −1 is returned if all variables are continuous.

call The matched call.

ncl Number of clusters.

n Number of observations.

iters Number of iterations used to obtain the returned solution.

converged Logical indicating whether convergence was reached before maxiter.

conv_tol Numeric convergence tolerance.

contcols Indices of continuous columns in X.

catcols Indices of categorical columns in X.

kernels List with names of kernels used for continuous, nominal, and ordinal features.

Objects of class "gibclust" support the following methods:

• print.gibclust: Display a concise description of the cluster assignment.

• summary.gibclust: Show detailed information including cluster sizes, information-theoretic
metrics, hyperparameters, and convergence details.

• plot.gibclust: Produce diagnostic plots:

– type = "sizes": barplot of cluster sizes or hardened sizes (IB/GIB).
– type = "info": barplot of entropy, conditional entropy, and mutual information.
– type = "beta": trajectory of log β over iterations (only available for hard clustering out-

puts obtained using DIBmix).

Author(s)

Efthymios Costa, Ioanna Papatsouma, Angelos Markos
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Examples

# Example dataset with categorical, ordinal, and continuous variables
set.seed(123)
data_mix <- data.frame(
cat_var = factor(sample(letters[1:3], 100, replace = TRUE)), # Nominal categorical variable
ord_var = factor(sample(c("low", "medium", "high"), 100, replace = TRUE),

levels = c("low", "medium", "high"),
ordered = TRUE), # Ordinal variable

cont_var1 = rnorm(100), # Continuous variable 1
cont_var2 = runif(100) # Continuous variable 2

)

# Perform Mixed-Type Fuzzy Clustering with Generalised IB
result_mix <- GIBmix(X = data_mix, ncl = 3, beta = 2, alpha = 0.5, nstart = 5)

# Print clustering results
print(result_mix$Cluster) # Cluster membership matrix
print(result_mix$Entropy) # Entropy of final clustering
print(result_mix$CondEntropy) # Conditional entropy of final clustering
print(result_mix$MutualInfo) # Mutual information between Y and T

# Summary of output
summary(result_mix)

# Simulated categorical data example
set.seed(123)
data_cat <- data.frame(

Var1 = as.factor(sample(letters[1:3], 200, replace = TRUE)), # Nominal variable
Var2 = as.factor(sample(letters[4:6], 200, replace = TRUE)), # Nominal variable
Var3 = factor(sample(c("low", "medium", "high"), 200, replace = TRUE),

levels = c("low", "medium", "high"), ordered = TRUE) # Ordinal variable
)

# Perform Fuzzy Clustering on categorical data with Generalised IB
result_cat <- GIBmix(X = data_cat, ncl = 2, beta = 25, alpha = 0.75, lambda = -1, nstart = 5)

# Print clustering results
print(result_cat$Cluster) # Cluster membership matrix
print(result_cat$Entropy) # Entropy of final clustering
print(result_cat$CondEntropy) # Conditional entropy of final clustering
print(result_cat$MutualInfo) # Mutual information between Y and T

# Simulated continuous data example
set.seed(123)
# Continuous data with 200 observations, 5 features
data_cont <- as.data.frame(matrix(rnorm(1000), ncol = 5))

# Perform Fuzzy Clustering on continuous data with Generalised IB
result_cont <- GIBmix(X = data_cont, ncl = 2, beta = 50, alpha = 0.75, s = -1, nstart = 5)

# Print clustering results
print(result_cont$Cluster) # Cluster membership matrix
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print(result_cont$Entropy) # Entropy of final clustering
print(result_cont$CondEntropy) # Conditional entropy of final clustering
print(result_cont$MutualInfo) # Mutual information between Y and T

plot(result_cont, type = "sizes") # Bar plot of cluster sizes (hardened assignments)
plot(result_cont, type = "info") # Information-theoretic quantities plot

IBmix Information Bottleneck Clustering for Mixed-Type Data

Description

The IBmix function implements the Information Bottleneck (IB) algorithm for clustering datasets
containing continuous, categorical (nominal and ordinal), and mixed-type variables. This method
optimizes an information-theoretic objective to preserve relevant information in the cluster assign-
ments while achieving effective data compression (Strouse and Schwab 2019).

Usage

IBmix(X, ncl, beta, randinit = NULL,
s = -1, lambda = -1, scale = TRUE,
maxiter = 100, nstart = 100,
conv_tol = 1e-5, contkernel = "gaussian",
nomkernel = "aitchisonaitken", ordkernel = "liracine",
cat_first = FALSE, verbose = FALSE)

Arguments

X A data frame containing the input data to be clustered. It should include categor-
ical variables (factor for nominal and Ord.factor for ordinal) and continuous
variables (numeric).

ncl An integer specifying the number of clusters.
beta Regularisation strength characterizing the tradeoff between compression and

relevance. Must be non-negative.
randinit An optional vector specifying the initial cluster assignments. If NULL, cluster

assignments are initialized randomly.
s A numeric value or vector specifying the bandwidth parameter(s) for continuous

variables. The values must be greater than 0. The default value is −1, which
enables the automatic selection of optimal bandwidth(s). Argument is ignored
when no variables are continuous.

lambda A numeric value or vector specifying the bandwidth parameter for categorical
variables. The default value is −1, which enables automatic determination of the
optimal bandwidth. For nominal variables and nomkernel = 'aitchisonaitken',
the maximum allowable value of lambda is (l−1)/l, where l represents the num-
ber of categories, whereas for nomkernel = 'liracine' the maximum allow-
able value is 1. For ordinal variables, the maximum allowable value of lambda
is 1, regardless of what ordkernel is being used. Argument is ignored when all
variables are continuous.
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scale A logical value indicating whether the continuous variables should be scaled
to have unit variance before clustering. Defaults to TRUE. Argument is ignored
when all variables are categorical.

maxiter The maximum number of iterations allowed for the clustering algorithm. De-
faults to 100.

nstart The number of random initializations to run. The best clustering solution is
returned. Defaults to 100.

conv_tol Convergence tolerance level; for a cluster membership matrix U (m) at iteration
m, convergence is achieved if

∑
i,j |U

m+1
i,j − Um

i,j | ≤ conv_tol. Must be in
range [0, 1]. Defaults to 1e-5.

contkernel Kernel used for continuous variables. Can be one of gaussian (default) or
epanechnikov. Argument is ignored when no variables are continuous.

nomkernel Kernel used for nominal (unordered categorical) variables. Can be one of aitchisonaitken
(default) or liracine. Argument is ignored when no variables are nominal.

ordkernel Kernel used for ordinal (ordered categorical) variables. Can be one of liracine
(default) or wangvanryzin. Argument is ignored when no variables are ordinal.

cat_first A logical value indicating whether bandwidth selection is prioritised for the cat-
egorical variables, instead of the continuous. Defaults to FALSE. Set to TRUE
if you suspect that the continuous variables are not informative of the cluster
structure. Can only be TRUE when data is of mixed-type and all bandwidths are
selected automatically (i.e. s = -1, lambda = -1).

verbose Logical. Defaults to FALSE to suppress progress messages. Change to TRUE to
print.

Details

The IBmix function produces a fuzzy clustering of the data while retaining maximal informa-
tion about the original variable distributions. The Information Bottleneck algorithm optimizes an
information-theoretic objective that balances information preservation and compression. Bandwidth
parameters for categorical (nominal, ordinal) and continuous variables are adaptively determined if
not provided. This iterative process identifies stable and interpretable cluster assignments by max-
imizing mutual information while controlling complexity. The method is well-suited for datasets
with mixed-type variables and integrates information from all variable types effectively.

The following kernel functions can be used to estimate densities for the clustering procedure. For
continuous variables:

• Gaussian (RBF) kernel (Silverman 1998):

Kc

(
x− x′

s

)
=

1√
2π

exp

{
− (x− x′)

2

2s2

}
, s > 0.

• Epanechnikov kernel (Epanechnikov 1969):

Kc(x− x′; s) =

{
3

4
√
5

(
1− (x−x′)2

5s2

)
, if (x−x′)2

s2 < 5

0, otherwise
, s > 0.
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For nominal (unordered categorical variables):

• Aitchison & Aitken kernel (Aitchison and Aitken 1976):

Ku(x = x′;λ) =

{
1− λ, if x = x′

λ
ℓ−1 , otherwise

, 0 ≤ λ ≤ ℓ− 1

ℓ
.

• Li & Racine kernel (Ouyang et al. 2006):

Ku(x = x′;λ) =

{
1, if x = x′

λ, otherwise
, 0 ≤ λ ≤ 1.

For ordinal (ordered categorical) variables:

• Li & Racine kernel (Li and Racine 2003):

Ko(x = x′; ν) =

{
1, if x = x′

ν|x−x′|, otherwise
, 0 ≤ ν ≤ 1.

• Wang & van Ryzin kernel (Wang and Van Ryzin 1981):

Ko(x = x′; ν) =

{
1− ν, if x = x′

1−ν
2 ν|x−x′|, otherwise

, 0 ≤ ν ≤ 1.

The bandwidth parameters s, λ, and ν control the smoothness of the density estimate and are au-
tomatically determined by the algorithm if not provided by the user using the approach in Costa et
al. (2025). ℓ is the number of levels of the categorical variable. For ordinal variables, the lambda
parameter of the function is used to define ν.

Value

An object of class "gibclust" representing the final clustering result. The returned object is a list
with the following components:

Cluster An integer vector giving the cluster assignments for each data point.

Entropy A numeric value representing the entropy of the cluster assignments at conver-
gence.

CondEntropy A numeric value representing the conditional entropy of cluster assignment,
given the observation weights H(T | X).

MutualInfo A numeric value representing the mutual information, I(Y ;T ), between the
original labels (Y ) and the cluster assignments (T ).

InfoXT A numeric value representing the mutual information, I(X;T ), between the
original observations weights (X) and the cluster assignments (T ).

beta A numeric vector of the final beta values used in the iterative procedure.

alpha A numeric value of the strength of conditional entropy used, controlling fuzzi-
ness of the solution. This is by default equal to 0 for DIBmix.
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s A numeric vector of bandwidth parameters used for the continuous variables. A
value of −1 is returned if all variables are categorical.

lambda A numeric vector of bandwidth parameters used for the categorical variables. A
value of −1 is returned if all variables are continuous.

call The matched call.

ncl Number of clusters.

n Number of observations.

iters Number of iterations used to obtain the returned solution.

converged Logical indicating whether convergence was reached before maxiter.

conv_tol Numeric convergence tolerance.

contcols Indices of continuous columns in X.

catcols Indices of categorical columns in X.

kernels List with names of kernels used for continuous, nominal, and ordinal features.

Objects of class "gibclust" support the following methods:

• print.gibclust: Display a concise description of the cluster assignment.

• summary.gibclust: Show detailed information including cluster sizes, information-theoretic
metrics, hyperparameters, and convergence details.

• plot.gibclust: Produce diagnostic plots:

– type = "sizes": barplot of cluster sizes or hardened sizes (IB/GIB).
– type = "info": barplot of entropy, conditional entropy, and mutual information.
– type = "beta": trajectory of log β over iterations (only available for hard clustering out-

puts obtained using DIBmix).

Author(s)

Efthymios Costa, Ioanna Papatsouma, Angelos Markos
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Examples

# Example dataset with categorical, ordinal, and continuous variables
set.seed(123)
data_mix <- data.frame(
cat_var = factor(sample(letters[1:3], 100, replace = TRUE)), # Nominal categorical variable
ord_var = factor(sample(c("low", "medium", "high"), 100, replace = TRUE),

levels = c("low", "medium", "high"),
ordered = TRUE), # Ordinal variable

cont_var1 = rnorm(100), # Continuous variable 1
cont_var2 = runif(100) # Continuous variable 2

)

# Perform Mixed-Type Fuzzy Clustering
result_mix <- IBmix(X = data_mix, ncl = 3, beta = 2, nstart = 1)

# Print clustering results
print(result_mix$Cluster) # Cluster membership matrix
print(result_mix$InfoXT) # Mutual information between X and T
print(result_mix$MutualInfo) # Mutual information between Y and T

# Summary of output
summary(result_mix)

# Simulated categorical data example
set.seed(123)
data_cat <- data.frame(

Var1 = as.factor(sample(letters[1:3], 100, replace = TRUE)), # Nominal variable
Var2 = as.factor(sample(letters[4:6], 100, replace = TRUE)), # Nominal variable
Var3 = factor(sample(c("low", "medium", "high"), 100, replace = TRUE),

levels = c("low", "medium", "high"), ordered = TRUE) # Ordinal variable
)

# Perform fuzzy clustering on categorical data with standard IB
result_cat <- IBmix(X = data_cat, ncl = 3, beta = 15, lambda = -1, nstart = 2, maxiter = 200)

# Print clustering results
print(result_cat$Cluster) # Cluster membership matrix
print(result_cat$InfoXT) # Mutual information between X and T
print(result_cat$MutualInfo) # Mutual information between Y and T

plot(result_cat, type = "sizes") # Bar plot of cluster sizes (hardened assignments)
plot(result_cat, type = "info") # Information-theoretic quantities plot

# Simulated continuous data example
set.seed(123)
# Continuous data with 100 observations, 5 features
data_cont <- as.data.frame(matrix(rnorm(500), ncol = 5))

# Perform fuzzy clustering on continuous data with standard IB
result_cont <- IBmix(X = data_cont, ncl = 3, beta = 50, s = -1, nstart = 2)

# Print clustering results
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print(result_cont$Cluster) # Cluster membership matrix
print(result_cont$InfoXT) # Mutual information between X and T
print(result_cont$MutualInfo) # Mutual information between Y and T
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