## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(GlmSimulatoR) library(ggplot2) library(stats) set.seed(1) simdata <- simulate_gaussian( N = 1000, weights = c(1, 3), link = "inverse", unrelated = 1, ancillary = .005 ) ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = Y)) + geom_histogram(bins = 30) ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = X1, y = Y)) + geom_point() ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = X2, y = Y)) + geom_point() ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = Unrelated1, y = Y)) + geom_point() ## ----------------------------------------------------------------------------- cor(x = simdata$X1, y = simdata$Y) cor(x = simdata$X2, y = simdata$Y) cor(x = simdata$Unrelated1, y = simdata$Y) ## ----------------------------------------------------------------------------- glm_inverse_x2 <- glm(Y ~ X2, data = simdata, family = gaussian(link = "inverse") ) glm_inverse_x1_x2 <- glm(Y ~ X1 + X2, data = simdata, family = gaussian(link = "inverse") ) glm_inverse_x1x2u1 <- glm(Y ~ X1 + X2 + Unrelated1, data = simdata, family = gaussian(link = "inverse") ) summary(glm_inverse_x2)$aic summary(glm_inverse_x1_x2)$aic # correct model summary(glm_inverse_x1x2u1)$aic ## ----------------------------------------------------------------------------- library(GlmSimulatoR) library(ggplot2) library(stats) set.seed(1) simdata <- simulate_gaussian( N = 1000, weights = c(.3, .8), link = "log", unrelated = 1, ancillary = 1 ) ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = Y)) + geom_histogram(bins = 30) ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = X1, y = Y)) + geom_point() ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = X2, y = Y)) + geom_point() ## ----------------------------------------------------------------------------- ggplot(simdata, aes(x = Unrelated1, y = Y)) + geom_point() ## ----------------------------------------------------------------------------- cor(x = simdata$X1, y = simdata$Y) cor(x = simdata$X2, y = simdata$Y) cor(x = simdata$Unrelated1, y = simdata$Y) ## ----------------------------------------------------------------------------- glm_identity <- glm(Y ~ X1 + X2, data = simdata, family = gaussian(link = "identity") ) glm_inverse <- glm(Y ~ X1 + X2, data = simdata, family = gaussian(link = "inverse") ) glm_log <- glm(Y ~ X1 + X2, data = simdata, family = gaussian(link = "log") ) summary(glm_identity)$aic summary(glm_inverse)$aic summary(glm_log)$aic # correct model.