## ----include = FALSE, eval = FALSE-------------------------------------------- # knitr::opts_chunk$set( # collapse = TRUE, # comment = "#>", # warning = FALSE, # message = FALSE, # eval = requireNamespace("GTAPViz", quietly = TRUE) # ) # ## ----Dev Period, include = FALSE, eval = FALSE-------------------------------- # try(devtools::load_all(".."), silent = TRUE) # go up one level from /vignettes/ # # input_path <- system.file("extdata/in", package = "GTAPViz") # sl4.plot.data <- readRDS(file.path(input_path, "sl4.plot.data.rds")) # har.plot.data <- readRDS(file.path(input_path, "har.plot.data.rds")) # macro.data <- readRDS(file.path(input_path, "macro.data.rds")) ## ----package, eval = FALSE---------------------------------------------------- # if (!requireNamespace("GTAPViz", quietly = TRUE)) { # devtools::install_github("Bodysbobb/GTAPViz") # } # # require(GTAPViz) ## ----Project Folder, eval = FALSE--------------------------------------------- # project.folder <- "your/folder/path" # # # Optional: You might not need to adjust this # input.folder <- paste0(project.folder, "/in") # map.folder <- paste0(project.folder, "/map") # output.folder <- paste0(project.folder, "/out") ## ----Experiment Name, eval = FALSE-------------------------------------------- # experiment <- c("TAR10", "SUBT10") # # # Automatically Processing These Inputs in the Input Folder # # - TAR10.sl4 and TAR10-WEL.har # # - SUBT10.sl4 and SUBT10-WEL.har ## ----Information Structure, eval = FALSE-------------------------------------- # mapping_info <- "Mix" ## ----Output Formats, eval = FALSE--------------------------------------------- # csv.output <- "YES" # stata.output <- "YES" # r.output <- "YES" # txt.output <- "YES" # # plot_data = TRUE # # # Convert units (optional) # # Options: "mil2bil", "bil2mil", "pct2frac", "frac2pct" — see details in `?convert_units` # sl4_convert_unit <- c("mil2bil") # har_convert_unit <- c("mil2bil") ## ----Config Summary, eval = FALSE--------------------------------------------- # # 1. Project Directory # project.folder <- "your/project/folder" # # # 2. Define the Input Names # experiment <- c("TAR10", "SUBT10") # # # 3. Adding Description / Unit (Yes/No/GTAPv7/Mix) # mapping_info <- "Mix" # # # 4. Choosing Output: (CSV, STATA, R, TEXT) # csv.output <- "No" # stata.output <- "No" # r.output <- "No" # txt.output <- "No" # # # 5. For Plotting: (TRUE/FALSE) # plot_data = TRUE ## ----Default Input, eval = FALSE---------------------------------------------- # # Default Subdirectories: # input.folder <- paste0(project.folder, "/in") # map.folder <- paste0(project.folder, "/map") # output.folder <- paste0(project.folder, "/out") # # # Default Mapping File: # sl4map <- readxl::read_xlsx(paste0(map.folder, "/OutputMapping.xlsx"), sheet = "SL4File") # harmap <- readxl::read_xlsx(paste0(map.folder, "/OutputMapping.xlsx"), sheet = "HARFile") # filter.map <- readxl::read_xlsx(paste0(map.folder, "/OutputMapping.xlsx"), sheet = "FilterData") # # # Filtering Data: # selected_regions <- if(length(filter.map$Region) > 0) filter.map$Region else NULL # selected_sector <- if(length(filter.map$Sector) > 0) filter.map$Sector else NULL ## ----Preparing Data for Plot, eval = FALSE------------------------------------ # auto_gtap_data( # experiment = experiment, # process_sl4_vars = sl4map, # process_har_vars = harmap, # mapping_info = mapping_info, # sl4_mapping_info = sl4map, # har_mapping_info = harmap, # sl4_convert_unit ="mil2bil", # har_convert_unit = "mil2bil", # region_select = selected_regions, # sector_select = selected_sector, # subtotal_level = FALSE, # rename_columns = TRUE, # decimals = 4, # project_path = project.folder, # plot_data = plot_data, # output_formats = list( # "csv" = csv.output, # "stata" = stata.output, # "rds" = r.output, # "txt" = txt.output)) ## ----Munual FilterData, eval=FALSE-------------------------------------------- # selected_regions <- c("EastAsia", "SEAsia", "Oceania") # selected_sector <- NULL ## ----Munual Mapping File Create, eval=FALSE----------------------------------- # mapping_df <- data.frame( # Variable = c("qgdp", "EV", "ppriv"), # Description = c("Real GDP Index", "Welfare Equivalents", "Consumer Price Index"), # Unit = c("Percent", "million USD", "percent"), # stringsAsFactors = FALSE # )