## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(FlowerMate) ## ----eval=F------------------------------------------------------------------- # install.packages(FlowerMate) # library(FlowerMate) ## ----------------------------------------------------------------------------- ## this is just you to get this same random example in your computer set.seed(1234) SimDimor(NIDL = 2, NIDS = 2) ## ----------------------------------------------------------------------------- ## this is just you to get this same random example in your computer set.seed(1234) SimDimor(NIDL = 2, NIDS = 2, LSTmeanZ = 0, LSTsdZ = 0, LANmeanZ = 0, LANsdZ = 0, SSTmeanZ = 0, SSTsdZ = 0, SANmeanZ = 0, SANsdZ = 0) ## this is just you to get this same random example in your computer set.seed(1234) SimDimor(NIDL = 2, NIDS = 2,LSTmeanX = 0, LSTsdX = 0, LANmeanX = 0, LANsdX = 0, SSTmeanX = 0, SSTsdX = 0, SANmeanX = 0, SANsdX = 0, LSTmeanZ = 0, LSTsdZ = 0, LANmeanZ = 0, LANsdZ = 0, SSTmeanZ = 0, SSTsdZ = 0, SANmeanZ = 0, SANsdZ = 0) ## ----------------------------------------------------------------------------- set.seed(1111) enantiostylous.dat<- SimDimor (NIDL=20, NIDS=20,Nst=1,Nan=3,Norg.st=1,Norg.an=1, LSTmeanX=-10, LSTsdX=2, LANmeanX=c(9,7,-7),LANsdX=c(2,2,2), SSTmeanX=9, SSTsdX=2, SANmeanX=c(-9,-6,6), SANsdX=c(2,2,2), LSTmeanY=9, LSTsdY=2, LANmeanY=c(7,3,3) ,LANsdY=c(2,2,2), SSTmeanY=8, SSTsdY=2, SANmeanY=c(6,2,3), SANsdY=c(2,2,2), LSTmeanZ=15, LSTsdZ=2, LANmeanZ=c(16,15,15) ,LANsdZ=c(2,2,2), SSTmeanZ=16, SSTsdZ=2, SANmeanZ=c(15,15,15), SANsdZ=c(2,2,2), pop_code="enantiostylous") set.seed(2222) distylous.dat <- SimDimor (NIDL=20, NIDS=20,Nst=1,Nan=1,Norg.st=1,Norg.an=1, LSTmeanX=0, LSTsdX=0, LANmeanX=0,LANsdX=0, SSTmeanX=0, SSTsdX=0, SANmeanX=0, SANsdX=0, LSTmeanY=8, LSTsdY=1, LANmeanY=4 ,LANsdY=1, SSTmeanY=5, SSTsdY=1, SANmeanY=9, SANsdY=1, LSTmeanZ=0, LSTsdZ=0, LANmeanZ=0 ,LANsdZ=0, SSTmeanZ=0, SSTsdZ=0, SANmeanZ=0, SANsdZ=0, pop_code="distylous") set.seed(3333) styledimor.2antherwhorl.dat <- SimDimor (NIDL=20, NIDS=20,Nst=1,Nan=2,Norg.st=1,Norg.an=1, LSTmeanX=0, LSTsdX=0, LANmeanX=c(0,0),LANsdX=c(0,0), SSTmeanX=0, SSTsdX=0, SANmeanX=c(0,0), SANsdX=c(0,0), LSTmeanY=8, LSTsdY=1, LANmeanY=c(6,5) ,LANsdY=c(1,1), SSTmeanY=4, SSTsdY=1, SANmeanY=c(6,5), SANsdY=c(1,1), LSTmeanZ=0, LSTsdZ=0, LANmeanZ=c(0,0) ,LANsdZ=c(0,0), SSTmeanZ=0, SSTsdZ=0, SANmeanZ=c(0,0), SANsdZ=c(0,0), pop_code="styledimorphic") set.seed(4444) tristylous.dat <-SimTrimor(NIDL=20,NIDM=20,NIDS=20, LUPmeanX=0, LUPsdX=0, LBWmeanX=0 ,LBWsdX=0, LLWmeanX=0, LLWsdX=0, MUPmeanX=0, MUPsdX=0, MBWmeanX=0 ,MBWsdX=0, MLWmeanX=0, MLWsdX=0, SUPmeanX=0, SUPsdX=0, SBWmeanX=0 ,SBWsdX=0, SLWmeanX=0, SLWsdX=0, LUPmeanY=12, LUPsdY=2, LBWmeanY=8 ,LBWsdY=2, LLWmeanY=4, LLWsdY=2, MUPmeanY=12, MUPsdY=2, MBWmeanY=8 ,MBWsdY=2, MLWmeanY=4, MLWsdY=2, SUPmeanY=12, SUPsdY=2, SBWmeanY=8 ,SBWsdY=2, SLWmeanY=4, SLWsdY=2, LUPmeanZ=0, LUPsdZ=0, LBWmeanZ=0 ,LBWsdZ=0, LLWmeanZ=0, LLWsdZ=0, MUPmeanZ=0, MUPsdZ=0, MBWmeanZ=0 ,MBWsdZ=0, MLWmeanZ=0, MLWsdZ=0, SUPmeanZ=0, SUPsdZ=0, SBWmeanZ=0 ,SBWsdZ=0, SLWmeanZ=0, SLWsdZ=0, pop_code="tristylous") ## ----------------------------------------------------------------------------- inaccuracy(enantiostylous.dat) inaccuracy(distylous.dat) inaccuracy(styledimor.2antherwhorl.dat) inaccuracy(tristylous.dat) ## ----------------------------------------------------------------------------- inaccuracy(enantiostylous.dat) inaccuracy(enantiostylous.dat, useonly.dim = c("x")) inaccuracy(enantiostylous.dat, useonly.dim = c("y")) ## ----------------------------------------------------------------------------- inaccuracy(enantiostylous.dat, verbose=TRUE) inaccuracy(distylous.dat, verbose=TRUE) inaccuracy(styledimor.2antherwhorl.dat, verbose=TRUE) inaccuracy(tristylous.dat, verbose=TRUE) ## ----error=TRUE--------------------------------------------------------------- inaccuracy(enantiostylous.dat, intramorph=TRUE) inaccuracy(distylous.dat, intramorph=TRUE) inaccuracy(styledimor.2antherwhorl.dat, intramorph=TRUE) inaccuracy(tristylous.dat, intramorph=TRUE) ## ----error=TRUE--------------------------------------------------------------- # This will create new objects and insert NA in the first value of every y column enantiostylous.dat_NA <- enantiostylous.dat distylous.dat_NA <- distylous.dat styledimor.2antherwhorl.dat_NA <- styledimor.2antherwhorl.dat tristylous.dat_NA <- tristylous.dat enantiostylous.dat_NA[1,"y"] <- distylous.dat_NA[1,"y"] <- styledimor.2antherwhorl.dat_NA[1,"y"] <- tristylous.dat_NA[1,"y"]<- NA inaccuracy(enantiostylous.dat) inaccuracy(distylous.dat) inaccuracy(styledimor.2antherwhorl.dat) inaccuracy(tristylous.dat) inaccuracy(enantiostylous.dat, na.rm=T) inaccuracy(distylous.dat, na.rm=T) inaccuracy(styledimor.2antherwhorl.dat, na.rm=T) inaccuracy(tristylous.dat, na.rm=T) ## ----error=FALSE-------------------------------------------------------------- inaccuracy(enantiostylous.dat) inaccuracy(enantiostylous.dat,useonly.vert=c("ST","AN1","AN3")) ## ----------------------------------------------------------------------------- ## This code will generate a five-populations input data: SEEDS<-4321:4325 exampleDataset<-c() for(i in 1:length(SEEDS)) { set.seed(SEEDS[i]) exampleDataset <- rbind(exampleDataset,SimDimor(NIDL = 10,NIDS = 10, Nst = 1, Nan = 1, LSTmeanX = 22, LSTsdX = 0.7, LANmeanX = 6, LANsdX = 0.2, SSTmeanX = 6, SSTsdX = 0.2, SANmeanX = 22, SANsdX = 0.7, LSTmeanY = 20, LSTsdY = 0.5, LANmeanY = 8, LANsdY = 0.5, SSTmeanY = 8, SSTsdY = 0.5, SANmeanY = 20, SANsdY = 0.5, LSTmeanZ = 18, LSTsdZ = 0.3, LANmeanZ = 9, LANsdZ = 0.3, SSTmeanZ = 9, SSTsdZ = 0.3, SANmeanZ = 18, SANsdZ = 0.3, pop_code=paste("pop",i,sep=""))) } ## Basic analysis inaccuracy(exampleDataset) ## Verbose inaccuracy(exampleDataset,verbose=TRUE) ## Subsetting dimensions inaccuracy(exampleDataset,useonly.dim = c("x","y"))