## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 6 ) ## ----setup, include = FALSE--------------------------------------------------- library(DeSciDe) # Define evaluation flag eval_flag <- Sys.getenv("NOT_CRAN") == "TRUE" # Load precomputed results if not in CRAN if(!eval_flag) { load("data/results_default.RData") load("data/results_total.RData") load("data/threshold_50.RData") load("data/threshold_20.RData") } ## ----error=FALSE-------------------------------------------------------------- # Import genes list and terms list from CSV genes <- read.csv("genes.csv", header = FALSE)[[1]] terms <- read.csv("terms.csv", header = FALSE)[[1]] ## ----------------------------------------------------------------------------- genes ## ----------------------------------------------------------------------------- terms ## ----plot_chunk, message=FALSE, warning=FALSE, eval = eval_flag--------------- # results <- descide(genes_list = genes, terms_list = terms) ## ----include = FALSE, eval=!eval_flag----------------------------------------- # Load precomputed results results <- results_default ## ----fig.width=8, fig.height=6, echo = FALSE---------------------------------- head(results$summary_results) ## ----fig.width=8, fig.height=6, echo = FALSE---------------------------------- plot_heatmap(results$pubmed_results) ## ----fig.width=8, fig.height=6, echo = FALSE---------------------------------- knitr::include_graphics("data/Network_full.pdf") ## ----fig.width=8, fig.height=6, echo = FALSE---------------------------------- plot_clustering(results$string_results) ## ----fig.width=8, fig.height=6, echo = FALSE---------------------------------- plot_connectivity_precedence(results$summary_results) ## ----message=FALSE, fig.width=8, fig.height=6, eval = eval_flag--------------- # results_total <- descide(genes_list = genes, terms_list = terms, rank_method = "total") ## ----include = FALSE, eval=!eval_flag----------------------------------------- # Load precomputed results for rank_method = "total" results_total <- results_total ## ----------------------------------------------------------------------------- head(results$summary_results) ## ----------------------------------------------------------------------------- head(results_total$summary_results) ## ----eval=FALSE, fig.width=8, fig.height=6------------------------------------ # # Change species to mus musculus for STRING search. # descide(genes_list = genes, terms_list = terms, species = 10090) ## ----eval=FALSE, fig.width=8, fig.height=6------------------------------------ # # Change STRING score threshold to 600. # descide(genes_list = genes, terms_list = terms, score_threshold = 600) ## ----eval=FALSE, fig.width=8, fig.height=6------------------------------------ # # Change STRING network type to only include physical interactions. # descide(genes_list = genes, terms_list = terms, network_type = "physical") ## ----full_string_chunk, warning=FALSE, fig.width=8, fig.height=6, eval = eval_flag---- # # Run STRING search and display network with full network. # full_string <- search_string_db(genes_list = genes, network_type = "full") # plot_string_network(full_string$string_db, full_string$string_ids) ## ----warning=FALSE, fig.width=8, fig.height=6, echo=FALSE, eval=!eval_flag---- knitr::include_graphics("data/Network_full.pdf") ## ----physical_string_chunk, warning=FALSE, fig.width=8, fig.height=6, eval = eval_flag---- # # Run STRING search and display network with physical network. # physical_string <- search_string_db(genes_list = genes, network_type = "physical") # plot_string_network(physical_string$string_db, physical_string$string_ids) ## ----warning=FALSE, fig.width=8, fig.height=6, echo=FALSE, eval=!eval_flag---- knitr::include_graphics("data/Network_physical.pdf") ## ----eval=FALSE, fig.width=8, fig.height=6------------------------------------ # # Command to adjust threshold_percentage for full descide pipeline. # results <- descide(genes_list = genes, terms_list = terms, threshold_percentage = 50) ## ----fig.width=8, fig.height=6------------------------------------------------ # Calculate and plot threshold of 20%. threshold_20 <- combine_summary(pubmed_search_results = results$pubmed_results, string_results = results$string_results, threshold_percentage = 20) plot_connectivity_precedence(combined_summary = threshold_20) ## ----fig.width=8, fig.height=6, include=FALSE, eval=!eval_flag---------------- # Load precomputed results for threshold 20% threshold_20 <- threshold_20 plot_connectivity_precedence(combined_summary = threshold_20) ## ----fig.width=8, fig.height=6------------------------------------------------ # Calculate and plot threshold of 50%. threshold_50 <- combine_summary(pubmed_search_results = results$pubmed_results, string_results = results$string_results, threshold_percentage = 50) plot_connectivity_precedence(combined_summary = threshold_50) ## ----fig.width=8, fig.height=6, include=FALSE, eval=!eval_flag---------------- # Load precomputed results for threshold 50% threshold_50 <- threshold_50 plot_connectivity_precedence(combined_summary = threshold_50) ## ----------------------------------------------------------------------------- head(threshold_20) head(threshold_50) ## ----eval=FALSE,fig.width=8, fig.height=6------------------------------------- # # Code to run DeSciDe and export all plots and tables to desired directory. # descide(genes_list = genes, terms_list = terms, export = TRUE, file_directory = "your/desired/directory", export_format = "excel") ## ----eval=FALSE--------------------------------------------------------------- # descide( # genes_list, # terms_list, # rank_method = "weighted", # species = 9606, # network_type = "full", # score_threshold = 400, # threshold_percentage = 20, # export = FALSE, # file_directory = NULL, # export_format = "csv" # ) ## ----eval=FALSE--------------------------------------------------------------- # search_pubmed(genes_list, terms_list, rank_method = "weighted") ## ----eval=FALSE--------------------------------------------------------------- # plot_heatmap(pubmed_search_results, file_directory = NULL, export = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # search_string_db( # genes_list, # species = 9606, # network_type = "full", # score_threshold = 400 # ) ## ----eval=FALSE--------------------------------------------------------------- # plot_string_network( # string_db, # string_ids, # file_directory = NULL, # export = FALSE # ) ## ----eval=FALSE--------------------------------------------------------------- # plot_clustering(string_results, file_directory = NULL, export = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # combine_summary( # pubmed_search_results, # string_results, # file_directory = NULL, # export_format = "csv", # export = FALSE, # threshold_percentage = 20 # ) ## ----eval=FALSE--------------------------------------------------------------- # plot_connectivity_precedence( # combined_summary, # file_directory = NULL, # export = FALSE # )