
Classes in CLVTools

Patrik Schilter Markus Meierer Jeffrey Näf Patrick Bachmann

September 21, 2025

Abstract

This document provides an overview of the classes used in the R package CLVTools. It serves as a
technical guide for developers and advanced users who wish to understand the internal object-oriented
architecture. The package employs a hybrid S4/S3 approach, using the formal S4 system for its core
modeling structure, while leveraging canonical S3 generic methods for a familiar and user-friendly
interface.

Contents

1 Overview: An S4 class system with S3 interfaces 2

2 S3 methods: User interface 2

3 S4 classes: Internal architecture 2

3.1 The clv.data hierarchy: Managing transaction and covariate data 2
3.2 The clv.time hierarchy: Handling time-related logic . 3
3.3 The clv.fitted hierarchy: Storing model fitting results 4
3.4 The clv.model hierarchy: Implementing model-specific steps 6

4 Adding a new model 8

1

1 Overview: An S4 class system with S3 interfaces

The CLVTools package is built on S4 classes but offers S3 interfaces to canonical methods. This hybrid
approach separates the internal complexity from the user interface.

• S4 for the core architecture: The formal and strict S4 system is used to define the core data
structures and model behaviors. This provides robustness and a clear inheritance structure what
allows us to construct rich and rather complex models.

• S3 for the user interface: To ensure the package is intuitive and integrates with the broader R
ecosystem, the canonical S3 generics (e.g. plot(), predict(), summary()) are used for the main
user-facing functions. For this, the package registers these S3 methods for its S4 classes.

In the following, we discuss both in detail.

2 S3 methods: User interface

While the core of the package is the S4 class system, the user interacts with the package primarily through
S3 generic functions what allows to write idiomatic R code. The key S3 generics in CLVTools include:

• print() and show(): For concise object display.

• summary(): For statistical summaries of fitted models.

• plot(): For diagnostic plots of fitted models and of the transaction data itself.

• predict(): For generating forecasts and estimating Customer Lifetime Value.

• coef(): For extracting estimated model coefficients.

• vcov(): For extracting the variance-covariance matrix.

• logLik(): For extracting the value of the log-likelihood function at final parameters.

• nobs(): For extracting the number of observations (customers).

In addition, there are further methods for which S3 as well as S4 generic methods have been defined and
exported:

• lrtest(): To conduct a likelihood ratio test of nested models.

• hessian(): To calculate the Hessian matrix at final parameters.

3 S4 classes: Internal architecture

The foundation of CLVTools is built on a set of well-defined S4 classes that manage data, time, model
logic, and results. These can be grouped into four primary hierarchies:

• clv.data: Pre-processing and storing transaction and covariate data.

• clv.time: Handling all time-related logic.

• clv.fitted: Storing all estimation results. Returned to the user for all down-stream interactions.

• clv.model: Handling all model-specific logic.

3.1 The clv.data hierarchy: Managing transaction and covariate data

The clv.data hierarchy is visualized in Figure 1. These classes are responsible for pre-processing, storing,
and managing user-provided transaction and covariate data.

2

Figure 1: The clv.data class hierarchy

Below, we provide a brief description of each class and list – if applicable – their key slots.

clv.data

The base class that holds only processed transaction data.

Key Slots

• data.transactions (data.table): The full transaction log.
• data.repeat.trans (data.table): Transaction log of only repeat transactions.
• clv.time (clv.time): For managing time-related logic at the user-defined time unit.

clv.data.static.covariates (clv.data)

Extends clv.data to include time-invariant covariate data.

Key Slots

• data.cov.life (data.table): Covariate data for the lifetime process.
• data.cov.trans (data.table): Covariate data for the transaction process.
• names.cov.data.life (character): Names of covariates for the lifetime process.
• names.cov.data.trans (character): Names of covariates for the transaction process.

clv.data.dynamic.covariates (clv.data.static.covariates)

Extends clv.data.static.covariates to handle time-varying covariates. Contains additional columns
in the covariate data.

3.2 The clv.time hierarchy: Handling time-related logic

The clv.time hierarchy is visualized in Figure 2. These classes handle all time-related logic, parsing
user inputs, as well as the definitions of estimation and holdout periods. Each class represents a specific
time unit and implements methods to do "time-unit math" such as measuring a time span in number
of time units. This encapsulation of time unit functionality allows to easily define custom types of time
units such as bi-weekly or irregularly spaced time units.

Figure 2: The clv.time class hierarchy.

Below, we provide a brief description of each class and list – if applicable – their key slots and key generic
methods.

3

clv.time (VIRTUAL)

The base class for all time units.

Key Slots

• timepoint.estimation.start (ANY): Start of the estimation period.
• timepoint.estimation.end (ANY): End of the estimation period.
• timepoint.holdout.start (ANY): Start of the holdout period.
• timepoint.holdout.end (ANY): End of the holdout period.
• estimation.period.in.tu (numeric): Length of the estimation period in time units.
• holdout.period.in.tu (numeric): Length of the holdout period in time units.
• time.format (character): Format used to parse dates and times given as characters.
• name.time.unit (character): Display name of the time unit for output.

Key Generic Methods

• clv.time.epsilon(): Minimal possible time step.
• clv.time.convert.user.input.to.timepoint(): Convert user-given date/datetimes.
• clv.time.interval.in.number.tu(): Measure time between time points in time units.
• clv.time.number.timeunits.to.timeperiod(): Create a period of given length time units.
• clv.time.tu.to.ly(): Name of time unit with post-fix "ly".
• clv.time.floor.date(): Round a time point down to the enclosing time unit.
• clv.time.ceiling.date(): Round a time point up to the enclosing time unit.
• clv.time.format.timepoint(): Format a given time point as string.

clv.time.date (clv.time, VIRTUAL)

Base class for all time units that operate at whole day granularity. Ignores the time of day and stores
all data using type Date.

clv.time.datetime (clv.time, VIRTUAL)

Base class for all time units that operate using POSIXct. Processes time and dates at the second level
and stores all data using POSIXct.

clv.time.hour (clv.time.datetime)

Represents a time unit of 1 hour.

clv.time.day (clv.time.date)

Represents a time unit of 1 day.

clv.time.week (clv.time.date)

Represents a time unit of 1 week.

clv.time.year (clv.time.date)

Represents a time unit of 1 year.

3.3 The clv.fitted hierarchy: Storing model fitting results

The clv.fitted hierarchy is visualized in Figure 3. These classes are the primary objects returned to
the user after fitting a model. They store the results of the estimation process and are used for any
downstream user interactions such as plotting or predicting.

4

Figure 3: The clv.fitted class hierarchy.

Below, we provide a brief description of each class and list – if applicable – their key slots and key generic
methods.

clv.fitted (VIRTUAL)

Base class for all fitted model results.

Key Slots

• call (language): Call used to fit the model.
• clv.model (clv.model): Object for model-specific behavior.
• clv.data (clv.data): Transaction and covariate data.
• cbs (data.table): Model input data.
• model.specification.args (list): Model specification as given by user.
• prediction.params.model (numeric): Model parameters for downstream usage.
• optimx.estimation.output (optimx): Optimizer output from fitting LL.
• optimx.hessian (matrix): Hessian matrix returned by the optimizer.

Key Generic Methods

• clv.controlflow.estimate.check.inputs(): Verify user inputs are valid for estimation.
• clv.controlflow.estimate.put.inputs(): Store user inputs for estimation.
• clv.controlflow.estimate.generate.start.params(): Generate start parameters if not given.
• clv.controlflow.estimate.prepare.optimx.args(): Build call args for LL optimization.
• clv.controlflow.estimate.process.post.estimation(): Steps after LL optimization finished.
• clv.controlflow.check.prediction.params(): Verify prediction parameters are valid.
• clv.controlflow.predict.set.prediction.params(): Set parameters for downstream usage.
• clv.controlflow.plot.check.inputs(): Verify user inputs for plotting.
• clv.fitted.bootstrap.predictions(): Bootstrap predictions.
• clv.fitted.estimate.same.specification.on.new.data(): Re-estimate model on new data.

clv.fitted.transactions (clv.fitted, VIRTUAL)

Base class for results of a latent attrition transaction model.

clv.pnbd (clv.fitted.transactions)

Results for the standard Pareto/NBD.

clv.bgnbd (clv.fitted.transactions)

Results for the standard BG/NBD.

clv.ggomnbd (clv.fitted.transactions)

Results for the standard GGom/NBD.

5

clv.fitted.transactions.static.cov (clv.fitted.transactions)

Base class for results of a latent attrition transaction models with static covariates.

Key Slots

• estimation.used.constraints (logical): Whether equality constraints were used.
• names.original.params.constr (character): Display names of constraint covariates.
• names.original.params.free.life (character): Display names of unconstraint lifetime covari-

ates.
• names.original.params.free.trans (character): Display names of unconstraint transaction

covariates.
• names.prefixed.params.constr (character): Names during optimization of constraint covari-

ates.
• names.prefixed.params.free.life (character): Names during optimization of unconstraint

lifetime covariates.
• names.prefixed.params.free.trans (character): Names during optimization of unconstraint

transaction covariates.
• names.prefixed.params.after.constr.life (character): Names during optimization of con-

straint covariates when they are used for the lifetime process.
• names.prefixed.params.after.constr.trans (character): Names during optimization of con-

straint covariates when they are used for the transaction process.
• estimation.used.regularization (logical): Whether regularization was used.
• reg.lambda.life (numeric): Regularization lambda used for the lifetime process.
• reg.lambda.trans (numeric): Regularization lambda used for the transaction process.
• prediction.params.life (numeric): Lifetime covariate parameters for downstream usage.
• prediction.params.trans (numeric): Transaction covariate parameters for downstream usage.

clv.pnbd.static.cov (clv.fitted.transactions.static.cov)

Results for the Pareto/NBD with static covariates.

clv.bgnbd.static.cov (clv.fitted.transactions.static.cov)

Results for the BG/NBD with static covariates.

clv.ggomnbd.static.cov (clv.fitted.transactions.static.cov)

Results for the GGom/NBD with static covariates.

clv.fitted.transactions.dynamic.cov (clv.fitted.transactions.static.cov)

Base class for results of transaction models with dynamic covariates.

clv.model.pnbd.dynamic.cov (clv.fitted.transactions.dynamic.cov)

Results for the Pareto/NBD with dynamic covariates.

clv.fitted.spending (clv.fitted, VIRTUAL)

Base class for spending model results.

Key Slots

• estimation.removed.first.transaction (logical): Whether first transactions are counted.

clv.gg (clv.fitted.spending)

Results for the standard Gamma/Gamma.

3.4 The clv.model hierarchy: Implementing model-specific steps

The clv.model hierarchy is visualized in Figure 4. The package architecture separates model-specific
logic from the main result object by encapsulating it in a dedicated class. Each result object (subclass of
clv.fitted) contains an instance of clv.model that is called whenever a model-related step is performed
(strategy pattern).

This addresses the inheritance challenge that arises when creating result classes for covariate models. If

6

only result classes from the clv.fitted hierarchy were used, a covariate model would need to inherit
from two parent classes in order to obtain both model-specific functionality and covariate-specific func-
tionality. For example, for the PNBD model with static covariates, the class would need to inherit from
both clv.pnbd (for PNBD-specific methods) and clv.fitted.transactions.static.cov (for covari-
ate handling methods). This creates a diamond inheritance problem where both parents inherit from
the common ancestor clv.fitted.transactions, leading to method resolution ambiguity. By using
composition instead of inheritance and moving all model-specific logic into the clv.model classes, model-
specific logic can be inherited between covariate and no covariate models (clv.model.pnbd.static inher-
its from clv.model.pnbd.no.cov). At the same time, all covariate data logic remains in the result class
(clv.pnbd.static.cov inherits from clv.fitted.transactions.static.cov and in addition, contains
an instance of clv.model.pnbd.static).

Figure 4: The clv.model class hierarchy.

Below, we provide a brief description of each class and list – if applicable – their key slots and key generic
methods.

clv.model(VIRTUAL)

Base class for model-specific functionalities.

Key Slots

• name.model (character): Display name of the model.
• fn.model.generic (standardGeneric): Method to apply to clv.data object to fit the model.
• names.original.params.model (character): Display names of model parameters.
• names.prefixed.params.model (character): Model parameter names during LL optimization.
• start.params.model (numeric): Default start parameters for the LL optimization if none are

provided.
• optimx.defaults (list): Default arguments with which the optimizer is called.

Key Generic Methods

• clv.model.check.input.args(): Verify user inputs are valid for estimation.
• clv.model.put.estimation.input(): Store inputs used for estimation.
• clv.model.prepare.optimx.args(): Build call args for LL optimization.
• clv.model.process.post.estimation(): Steps after LL optimization finished.
• clv.model.transform.start.params.model(): Transform model parameters for estimation.
• clv.model.backtransform.estimated.params.model(): Reverse transform model parameters.
• clv.model.transform.start.params.cov(): Transform covariate parameters for estimation.
• clv.model.backtransform.estimated.params.cov(): Reverse transform covariate parameters.
• clv.model.vcov.jacobi.diag(): Build Jacobian matrix for variance-covariance corrections.
• clv.model.cor.to.m(): Transform correlation to parameter m.
• clv.model.m.to.cor(): Transform parameter m to correlation.
• clv.model.expectation(): Calculate unconditional expectation.
• clv.model.predict(): Calculate all prediction metrics.
• clv.model.process.newdata(): Steps to replace clv.data object in fitted model result object.
• clv.model.probability.density(): Calculate model pdf.

7

clv.model.no.correlation (clv.model, VIRTUAL)

Base class for models without correlation.

clv.model.with.correlation (clv.model, VIRTUAL)

Base class for models with correlation.
Key Slots

• estimation.used.correlation (logical): Whether correlation was used.
• name.prefixed.cor.param.m (character): Internal name used during estimation.
• name.correlation.cor (character): Display name of the correlation parameter.

clv.model.pnbd.no.cov (clv.model.with.correlation)

Logic for the standard Pareto/NBD.

clv.model.pnbd.static.cov (clv.model.pnbd.no.cov)

Logic for the Pareto/NBD with static covariates.

clv.model.pnbd.dynamic.cov (clv.model.pnbd.static.cov)

Logic for the Pareto/NBD with dynamic covariates.

clv.model.bgnbd.no.cov (clv.model.no.correlation)

Logic for the standard BG/NBD.

clv.model.bgnbd.static.cov (clv.model.bgnbd.static.cov)

Logic for the BG/NBD with static covariates.

clv.model.ggomnbd.no.cov (clv.model.no.correlation)

Logic for the standard GGom/NBD.

clv.model.ggomnbd.static.cov (clv.model.ggomnbd.no.cov)

Logic for the GGom/NBD with static covariates.

clv.model.gg (clv.model.no.correlation)

Logic for the Gamma/Gamma.

4 Adding a new model

This architecture is designed for extensibility. To add a new probabilistic model (e.g., "NewModel"), the
following topics have to be covered:

• Define the model logic: A new S4 class for the model’s logic (e.g., clv.model.newmodel.no.cov)
has to be created. This class serves as the "brain" of the new model and should inherit from an
appropriate clv.model subclass.

• Define the result object: A corresponding S4 class to store results has to be defined (e.g.,
clv.newmodel). It must inherit from clv.fitted.transactions or a sub-class thereof and acts as
the final object returned to the user, bundling the model logic, the data, and estimation results.

• Create the user entrypoint: A user-facing S4 generic function, such as newmodel(), must be
created to act as the entry point for fitting the model. This generic method should dispatch on
the class of the clv.data object, allowing for different implementations for data with and without
covariates.

8

	Overview: An S4 class system with S3 interfaces
	S3 methods: User interface
	S4 classes: Internal architecture
	The clv.data hierarchy: Managing transaction and covariate data
	The clv.time hierarchy: Handling time-related logic
	The clv.fitted hierarchy: Storing model fitting results
	The clv.model hierarchy: Implementing model-specific steps

	Adding a new model

