
Advanced and Very Advanced Modeling Techniques

in CLVTools

Markus Meierer Patrik Schilter Jeffrey Näf Patrick Bachmann

September 21, 2025

Abstract

This document provides an overview of advanced modeling techniques for the probabilistic models
implemented in the R package CLVTools. CLVTools offers various advanced modeling options that go
beyond basic customer base analysis with or without covariates. These include the ability (a) to add
regularization for covariate parameters, (b) to account for the correlation between the transaction
and dropout process, (c) set equality constraints on covariate parameters, (d) control for endogenous
covariates, (e) add a Hessian matrix to an already fitted model, and (f) run fast bootstrapping by
sampling model parameters directly.

Contents

1 Data setup 2

2 Regularization of covariate parameters 2

3 Adding a correlation between the transaction and attrition process 3

4 Including equality constraints for covariate parameters 4

5 Controlling for endogenous covariates 6

6 Adding a Hessian matrix to an already fitted model 6

7 Running fast bootstrapping by sampling model parameters directly 8

1

1 Data setup

First, we create a data object that will be used throughout this vignette.

R> library(CLVTools)

R> library(data.table)

R> data("apparelTrans")

R> data("apparelStaticCov")

Create transaction data object with static covariates

R> clv.apparel <- clvdata(

+ data.transactions = apparelTrans,

+ date.format = "ymd",

+ time.unit = "week",

+ estimation.split = 104,

+ name.id = "Id",

+ name.date = "Date",

+ name.price = "Price"

+)

Store all available covariates for both processes

R> clv.apparel.static <- SetStaticCovariates(

+ clv.data = clv.apparel,

+ data.cov.life = apparelStaticCov,

+ data.cov.trans = apparelStaticCov,

+ names.cov.life = c("Gender", "Channel"),

+ names.cov.trans = c("Gender", "Channel"),

+ name.id = "Id"

+)

2 Regularization of covariate parameters

When a large number of covariates are included in the analysis, regularization can help prevent overfitting.
To this end, it is possible to apply a normal prior on the covariate parameters (L2 regularization). This
requires specifying a regularization weight λreg per process. The value of λreg is the same for all covariate
parameters of a process. The larger λreg, the stronger the effect of the regularization while a value of 0
results in no regularization. To find the optimal λreg, any hyperparameter optimization procedure can
be applied.

To regularize covariate parameters, the regularization weights for both processes must be defined in
the parameter reg.lambdas. For example, reg.lambdas = c(trans = 0.1, life = 0.2) sets λreg to
0.1 for the transaction process and 0.2 for the lifetime processes. The use of regularization and weights
is indicated at the end of the output of summary().

Fit model while applying regularization to the covariate parameters

R> est.pnbd.regularization <- latentAttrition(

+ formula = ~ Gender + Channel | Gender + Channel,

+ family = pnbd,

+ data = clv.apparel.static,

+ verbose = FALSE,

+ reg.lambdas = c(trans = 0.1, life = 0.2)

+)

R> summary(est.pnbd.regularization)

Pareto/NBD with Static Covariates Model

Call:

latentAttrition(formula = ~Gender + Channel | Gender + Channel,

2

family = pnbd, data = clv.static, reg.lambdas = c(trans = 0.1,

life = 0.2))

Fitting period:

Estimation start 2005-01-02

Estimation end 2006-12-31

Estimation length 104.0000 Weeks

Coefficients:

Estimate Std. Error z-val Pr(>|z|)

r 1.73887 8.07414 NA NA

alpha 69.85288 315.45779 NA NA

s 0.53350 5.81354 NA NA

beta 39.68346 704.57431 NA NA

life.Gender -0.04437 1.54979 -0.029 0.977

life.Channel 0.02465 1.54501 0.016 0.987

trans.Gender 0.17178 1.63462 0.105 0.916

trans.Channel 0.23676 1.65635 0.143 0.886

Optimization info:

LL -9.7313

AIC 35.4626

BIC 70.6380

KKT 1 TRUE

KKT 2 TRUE

fevals 33.0000

Method L-BFGS-B

Used Options:

Correlation FALSE

Regularization TRUE

lambda.life 0.2000

lambda.trans 0.1000

Constraint covs FALSE

3 Adding a correlation between the transaction and attrition pro-

cess

To relax the assumption of independence between the transaction and the attrition process, specify the
argument use.cor in the latentAttrition() command. This is independent of whether the model
includes covariates or not. With regard to the latter, this is an extension of the model presented in
Bachmann et al. (2021). In the case of use.cor=TRUE, a Sarmanov approach is used to correlate the
attrition and transaction process. The argument start.param.cor allows us to optionally specify a
starting value for the correlation parameter.

The model output will then list an additional parameter Cor(life,trans), which may be directly
interpreted as a correlation:

• If the correlation is zero, it indicates that there is no relationship between customers’ transaction
and attrition rate.

• If the correlation is positive and significant, customers with a higher (lower) transaction rate are
more (less) likely to churn. The underlying mechanism is as follows: a higher transaction rate λ is
associated with a higher attrition rate µ, i.e., a reduction in the customer’s lifetime.

• If the correlation is negative and significant, customers with a higher (lower) transaction rate are
less (more) likely to churn.

3

The impact of adding a correlation parameter depends on the dataset. In many applications that focus
on prediction rather than on an in-depth understanding of customers’ purchase behavior, the modeling of
the additional parameter is neglected. A key reason for this is the increase in computational complexity
compared to the often only marginal change in predictive accuracy. While this is a common decision
among practitioners, it depends on the data at hand and the modeling objective.

4 Including equality constraints for covariate parameters

If more complex hypothesis testing is required, users can leverage parameter constraints to compare
effect sizes between the attrition and transaction process. All latent attrition models that can account
for time-invariant and time-varying covariates support equality constraints for the respective covariate
parameters. For example, it is possible to test whether the parameter value of the covariate Gender is
the same for both processes. This potentially facilitates testing of novel hypotheses and thus, helps to
increase the understanding how a particular covariate impacts each process.

Here, we add such a constraint for the parameter estimates of the covariate Gender. In the following,
we present both the unconstrained and the constrained model. First, the unconstrained model:

R> est.pnbd.full <- latentAttrition(

+ formula = ~ . | .,

+ family = pnbd,

+ data = clv.apparel.static,

+ verbose = FALSE)

R> summary(est.pnbd.full)

Pareto/NBD with Static Covariates Model

Call:

latentAttrition(formula = ~. | ., family = pnbd, data = clv.apparel.static,

verbose = FALSE)

Fitting period:

Estimation start 2005-01-02

Estimation end 2006-12-31

Estimation length 104.0000 Weeks

Coefficients:

Estimate Std. Error z-val Pr(>|z|)

r 1.8378 0.3455 5.320 1.04e-07 ***

alpha 92.9123 16.9670 5.476 4.35e-08 ***

s 0.5920 0.2609 2.269 0.02327 *

beta 49.6227 36.2509 1.369 0.17104

life.Gender -0.6430 0.2955 -2.176 0.02957 *

life.Channel 0.7907 0.3059 2.585 0.00973 **

trans.Gender 0.2859 0.1041 2.745 0.00605 **

trans.Channel 0.6241 0.1050 5.946 2.74e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Optimization info:

LL -5821.0627

AIC 11658.1254

BIC 11693.3009

KKT 1 TRUE

KKT 2 TRUE

fevals 41.0000

Method L-BFGS-B

4

Used Options:

Correlation FALSE

Regularization FALSE

Constraint covs FALSE

Second, the constrained model:

R> est.pnbd.constr <- latentAttrition(

+ formula = ~ . | .,

+ names.cov.constr = "Gender",

+ family = pnbd,

+ data = clv.apparel.static,

+ verbose = FALSE)

R> summary(est.pnbd.constr)

Pareto/NBD with Static Covariates Model

Call:

latentAttrition(formula = ~. | ., family = pnbd, data = clv.apparel.static,

verbose = FALSE, names.cov.constr = "Gender")

Fitting period:

Estimation start 2005-01-02

Estimation end 2006-12-31

Estimation length 104.0000 Weeks

Coefficients:

Estimate Std. Error z-val Pr(>|z|)

r 1.7939 0.3318 5.406 6.43e-08 ***

alpha 94.7223 17.2216 5.500 3.79e-08 ***

s 0.4287 0.1418 3.025 0.00249 **

beta 59.0743 34.5098 1.712 0.08693 .

life.Channel 1.0228 0.3542 2.888 0.00388 **

trans.Channel 0.6384 0.1064 5.998 2.00e-09 ***

constr.Gender 0.3283 0.1074 3.056 0.00224 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Optimization info:

LL -5826.5342

AIC 11667.0684

BIC 11697.8469

KKT 1 TRUE

KKT 2 TRUE

fevals 48.0000

Method L-BFGS-B

Used Options:

Correlation FALSE

Regularization FALSE

Constraint covs TRUE

Constraint params Gender

In this case, we estimate an additional model that forces the covariate Gender to have the same
parameter value for both transaction and attrition processes. We specify this constraint using the
names.cov.constr argument. As a result, the model output displays only a single parameter value
for this variable. The summary() output indicates the use of these parameter constraints at the end.

5

A likelihood ratio test helps to evaluate whether adding an equality constraint changes the model fit
in a significant way.

lrtest(

est.pnbd.constr,

est.pnbd.full,

name = c("Constrained Model", "Unconstrained Model")

)

Likelihood ratio test

Model 1: Constrained Model

Model 2: Unconstrained Model

#Df LogLik Df Chisq Pr(>Chisq)

1 7 -5826.5

2 8 -5821.1 1 10.943 0.0009396 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The test compares likelihood values between unconstrained and constrained models to determine if a
covariate’s effect size differs significantly between the attrition and transaction process. For the Gender

covariate in our case study, the results reveal a significant difference between these models. This indicates
that the effect size of Gender is statistically different between the attrition and transaction process. In
other words, adding an equality constraint for the Gender parameter significantly worsened the model
fit.

Further use cases are possible. For example, when exogenous information on marketing interven-
tions is available, this analysis is particularly helpful to disentangle how marketing intervention impacts
customers’ purchase behavior.

5 Controlling for endogenous covariates

An additional use case for advanced modeling techniques is to control for endogenous covariates. The
covariate parameter estimates for the covariates can give some insight into what drives customers’ pur-
chase behavior. If the exogeneity assumption of the covariates is violated, various techniques can be used
to control for this.

Consequently, the models that support covariates in CLVTools can be used together with other pack-
ages that implement related two-step modeling techniques. The first option is to use instrumental vari-
ables, which can be implemented with R Base. If these are not available, internal instrumental variable
approaches can serve as an alternative (Gui et al., 2023). As many of these are designed as two-step ap-
proaches, their application to latent attrition models is straightforward. In this case study, all covariates
are assumed to be exogenous. For an exemplary case study detailing various approaches to controlling
the endogeneity of marketing campaigns, see Bachmann et al. (2021).

6 Adding a Hessian matrix to an already fitted model

For various reasons, one might want to fit a model without estimating the Hessian matrix at the end of
the optimization procedure. If the Hessian, however, is not derived, there is no variance-covariance matrix
available, and therefore, also no standard errors. A numerical approximation of the Hessian matrix can
still be calculated at the final parameters using the method hessian(). To this end, we are first going
to fit a model without deriving the Hessian at the end of the parameter optimization. This requires to
also disable the KKT criteria.

Fit a model without calculating the Hessian

6

R> est.pnbd.noH <- latentAttrition(

+ family = pnbd,

+ data = clv.apparel,

+ verbose = FALSE,

+ optimx.args = list(hessian=FALSE, control=list(kkt=FALSE))

)

Hessian set to all NA

print(est.pnbd.noH@optimx.hessian)

Warning: Hessian could not be derived. Setting all entries to NA.

log.r log.alpha log.s log.beta

log.r NA NA NA NA

log.alpha NA NA NA NA

log.s NA NA NA NA

log.beta NA NA NA NA

There is a warning that the Hessian is not calculated, and all its values are set to NA. As shown in
the following, no variance-covariance matrix can be obtained by inverting the Hessian, and consequently,
there are also no standard errors for any parameter.

Variance-covariance matrix fails

R> print(vcov(est.pnbd.noH))

No standard errors

R> print(coef(summary(est.pnbd.noH)))

Error: The vcov matrix cannot be calulated because the hessian contains non-finite values!

Estimate Std. Error z-val Pr(>|z|)

r 1.4489768 NA NA NA

alpha 48.6360845 NA NA NA

s 0.5612598 NA NA NA

beta 46.8843633 NA NA NA

Warning message:

For some parameters the standard error could not be calculated.

We can manually derive the Hessian matrix at the final parameters using hessian(). The model
parameters were estimated at "log-scale" to ensure that they all remain greater than 0. This explains
why the parameters are prefixed with "log." in the column and row names. For the variance-covariance
matrix, the Hessian is not only inverted but also appropriately transformed to ensure that the variances
and standard errors are correctly calculated at the parameters’ "original scale".

Given the final parameters, derive the Hessian

R> H <- hessian(est.pnbd.noH)

R> print(H)

log.r log.alpha log.s log.beta

log.r 433.22658 -388.22026 -117.48760 86.38645

log.alpha -388.22026 402.65104 78.92603 -57.69810

log.s -117.48760 78.92603 117.95191 -78.20295

log.beta 86.38645 -57.69810 -78.20295 53.99615

By adding the Hessian to the fitted model, both the variance-covariance matrix and the standard
errors become available. Note that the output of vcov is at the original parameter scale. Recall that
p-values only make sense for covariate parameters. Although standard errors are shown, the p-values
therefore remain NA for all coefficients here.

7

Add the Hessian permanently to the estimated model

R> est.pnbd.noH@optimx.hessian <- H

R> print(vcov(est.pnbd.noH))

R> print(coef(summary(est.pnbd.noH)))

r alpha s beta

r 0.05925727 1.7049763 -0.01786467 -3.472616

alpha 1.70497626 56.0878415 -0.43375972 -82.963756

s -0.01786467 -0.4337597 0.07346698 9.366245

beta -3.47261643 -82.9637556 9.36624519 1268.172624

Estimate Std. Error z-val Pr(>|z|)

r 1.4489768 0.2434282 NA NA

alpha 48.6360845 7.4891816 NA NA

s 0.5612598 0.2710479 NA NA

beta 46.8843633 35.6114114 NA NA

7 Running fast bootstrapping by sampling model parameters di-

rectly

Using the internal methods of CLVTools, it is possible to run a fast bootstrapping procedure that samples
the model parameters directly. The implementation outlined below is a preview of a future feature that
will be included in CLVTools once additional research has provided more insights on the advantages and
limitations compared to the regular bootstrapping procedure in CLVTools.

Let θ̂ be the (log) parameters obtained through maximum likelihood. According to standard likelihood

theory, θ̂ approximately follows a Gaussian distribution N(θ,H−1(θ̂)), where H−1(θ̂) is the inverse of
the Hessian matrix. A similar result holds under bootstrapping, where the estimate of θ obtained after

bootstrapping,
˙̂
θ, follows an approximate N(θ̂, H−1(θ̂)) distribution, given the original data; see, e.g.,

Cheng and Huang (2010). As such, instead of bootstrapping the data and calculating
˙̂
θn, we could simply

draw
˙̂
θ from N(θ̂, H−1(θ̂)) to obtain approximate bootstrap samples. We detail this approach here.

For reproducibility

R> set.seed(42)

Fit a PNBD model where "Gender" is constrained to be equal for both processes

R> p.apparel.constr <- pnbd(

+ clv.data.apparel.cov,

+ names.cov.constr = "Gender",

+ verbose = FALSE

+)

R> gg.apparel <- gg(clv.data.apparel, verbose=FALSE)

We begin by defining the log-likelihood for the joint model that combines the individually estimated
latent attrition and spending models for the purpose of this bootstrap procedure. To arrive at the
likelihood of the joint model, the individual model likelihoods are multiplied. Because we are operating
with the log-likelihoods, however, the individual model log-likelihoods have to be summed.

To implement this, we use the internal method clv.get.LL() in the CLVTools package which returns
a method to calculate the LL with the exact same specification used to fit the model originally. The
returned function also contains all the required inputs besides the parameters. Note that the parameters
are not all at original scale. The model parameters (r, α, s, β) are at "log-scale" and transformed back in
the likelihood. Extracting them from the original optimizer output is the most straightforward to ensure
they are at the correct scale and correctly named.

8

Functions to call log-likelihoods with their original specification

R> LL.pnbd <- CLVTools:::clv.fitted.get.LL(p.apparel.constr)

R> LL.gg <- CLVTools:::clv.fitted.get.LL(gg.apparel)

Extract parameters required for log-likelihoods from optimx output

R> final.coefs.pnbd <- drop(tail(coef(p.apparel.constr@optimx.estimation.output), n=1))

R> final.coefs.gg <- drop(tail(coef(gg.apparel@optimx.estimation.output)))

Define parameter names:

Used in ‘fn.joint.LL‘ to forward parameters to relevant model log-likelihoods

(and some other places)

R> names.params.pnbd <- names(final.coefs.pnbd)

R> names.params.gg <- names(final.coefs.gg)

Log-Likelihood of joint model

Accepts a vector that contains parameters for both sub-models

R> fn.joint.LL <- function(params){

+ return(

+ # Call the per-model LL only with the parameters of the respective

+ # models, using names to extract the relevant ones

+ LL.pnbd(params[names.params.pnbd]) + LL.gg(params[names.params.gg])

+)

+ }

Given the log-likelihood of the joint model, the Hessian matrix is numerically approximated at the
final coefficients. By inverting the Hessian, the variance-covariance matrix is obtained.

Parameters for the joint-LL

R> final.params.joint <- c(final.coefs.pnbd, final.coefs.gg)

Approximate hessian of joint model at final parameters

R> H.joint <- numDeriv::hessian(

+ func = fn.joint.LL,

+ x = final.params.joint

+)

R> rownames(H.joint) <- colnames(H.joint) <- names(final.params.joint)

Invert the Hessian

R> vcov.joint <- solve(H.joint)

Given the variance-covariance matrix H−1(θ̂), we can then sample parameters
˙̂
θ from the Gaussian

distribution N(θ̂, H−1(θ̂)). It is to note that these sampled parameters are at the scale that was required
for calling the log-likelihoods. In detail, mostly at the log-scale, as can be easily recognized by their
names.

Sample parameters

R> params.sampled.joint <- mvrnorm(n = 100, mu = final.params.joint, Sigma = vcov.joint)

R> head(round(params.sampled.joint, 3))

log.r log.alpha log.s log.beta life.Channel trans.Channel

[1,] 0.383 4.568 -0.795 4.993 1.714 0.861

[2,] 0.788 4.661 -0.891 3.723 0.913 0.710

[3,] 0.583 4.516 -0.549 4.225 0.644 0.596

[4,] 0.698 4.619 -0.350 4.372 0.348 0.579

[5,] 0.487 4.517 -0.830 4.317 1.563 0.621

[6,] 0.575 4.522 -0.937 4.008 1.468 0.657

9

constr.Gender log.p log.q log.gamma

[1,] 0.470 0.952 1.899 4.439

[2,] 0.224 0.923 1.842 4.373

[3,] 0.357 1.238 1.529 3.699

[4,] 0.315 0.756 1.920 4.634

[5,] 0.345 1.309 1.671 3.838

[6,] 0.286 0.981 1.664 4.034

We can then use the sampled parameters to make predictions and diagnostic plots. For this, we use
a copy of the fitted model object and replace the existing parameters with these new parameters. This
gives us access to all the functionalities that we require, but let us use the new parameters. To do so,
we replace the original estimated parameters in the optimizer outputs with the sampled ones. We then
use an internal method to set the model’s "prediction parameters": The parameters in original scale that
are used for all downstream calculations after the optimization, such as making predictions or diagnostic
plots. Setting these parameters manually is challenging, since they are estimated at different scales and
can only equal 1 for both processes when using equality constraints.

List from applying the defined function to every row of sampled parameters

R> l.preds <- lapply(seq(NROW(params.sampled.joint)), function(i){

+ # Get i-th parameters for respective model

+ i.params.pnbd <- params.sampled.joint[i, names.params.pnbd]

+ i.params.gg <- params.sampled.joint[i, names.params.gg]

+

+ # Set the sampled parameters on a copy of the fitted model

+ i.pnbd <- p.apparel.constr

+ i.gg <- gg.apparel

+

+ i.pnbd@optimx.estimation.output[1, names.params.pnbd] <- i.params.pnbd

+ i.pnbd <- CLVTools:::clv.controlflow.predict.set.prediction.params(i.pnbd)

+ # PNBD with dynamic covs would further require to also re-calculate ‘@LL.data‘

+ # i.pnbd@LL.data<-pnbd_dyncov_getLLdata(clv.fitted=i.pnbd, params=i.params.pnbd)

+

+ i.gg@optimx.estimation.output[1, names.params.gg] <- i.params.gg

+ i.gg <- CLVTools:::clv.controlflow.predict.set.prediction.params(i.gg)

+

+ # Now use the fitted models on which the parameters were changed to make

+ # predictions. The predictions with the adapted gg model are made inside

+ # predict() using the provided fitted model object ‘i.gg‘.

+ dt.pred <- predict(

+ i.pnbd,

+ predict.spending = i.gg,

+ prediction.end = 104,

+ continuous.discount.factor = log(1+0.1)/52,

+ verbose = FALSE

+)

+

+ return(dt.pred)

+ })

Bind to single table

R> dt.preds <- rbindlist(l.preds)

Recall that only the parameters were replaced, with no sampling of customers or transactions. The
transaction and covariate data in the model remain unchanged. As a result, we maintain the same number
of predictions for every customer. This consistency is not guaranteed with conventional bootstrapping.

We proceed and now calculate the confidence intervals to quantify the parameter uncertainty of the
model:

10

Calculate some CIs for CLV which is the combination of PNBD and GG

R> dt.preds.ci <- dt.preds[, list(

+ CLV.05 = quantile(predicted.CLV, probs=0.05),

+ CLV.median = quantile(predicted.CLV, probs=0.5),

+ CLV.mean = mean(predicted.CLV),

+ CLV.95 = quantile(predicted.CLV, probs=0.95)

+),

+ by = Id]

Predictions with the original models

R> dt.preds.original <- predict(

+ p.apparel.constr,

+ predict.spending = gg.apparel,

+ prediction.end = 104,

+ continuous.discount.factor = log(1+0.1)/52,

+ verbose=FALSE)

Combine and print

R> dt.preds.ci[dt.preds.original, CLV.original := i.predicted.CLV, on = "Id"]

R> dt.preds.ci[, c("Id","CLV.original","CLV.05","CLV.median","CLV.mean","CLV.95")]

Id CLV.original CLV.05 CLV.median CLV.mean CLV.95

<char> <num> <num> <num> <num> <num>

1: 1 1128.92389 944.22892 1123.42276 1130.70849 1352.47235

2: 10 293.65589 236.46337 294.66638 294.19581 356.24903

3: 100 42.82015 29.30950 42.68499 42.97384 55.27039

4: 101 78.70005 55.86206 75.35320 79.76272 127.63147

5: 102 42.82015 29.30950 42.68499 42.97384 55.27039

596: 95 176.28140 141.26828 174.64106 175.97826 211.93977

597: 96 24.87468 16.87976 23.37485 24.75444 33.97500

598: 97 51.31572 35.26809 51.45389 51.32866 63.40403

599: 98 118.75273 87.64524 116.18627 119.52325 172.83709

600: 99 167.33232 131.79023 166.17191 166.61359 210.12010

We note that due to the nonlinear transformations of the parameters from the predictions of the CLV,
the mean of the bootstrapped values generally no longer corresponds to the original CLV predictions.
However, in most cases, the deviations are minimal.

References

Patrick Bachmann, Markus Meierer, and Jeffrey Näf. The Role of Time-Varying Contextual Factors in
Latent Attrition Models for Customer Base Analysis. Marketing Science, 40(4):783–809, 2021.

Guang Cheng and Jianhua Z. Huang. Bootstrap consistency for general semiparametric M-estimation.
The Annals of Statistics, 38(5):2884–2915, 2010.

Raluca Gui, Markus Meierer, Patrik Schilter, and René Algesheimer. Rendo: internal instrumental
variables to address endogeneity. Journal of Statistical Software, 107:1–43, 2023.

11

	Data setup
	Regularization of covariate parameters
	Adding a correlation between the transaction and attrition process
	Including equality constraints for covariate parameters
	Controlling for endogenous covariates
	Adding a Hessian matrix to an already fitted model
	Running fast bootstrapping by sampling model parameters directly

