## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- citation("AquaticLifeHistory") ## ----message=FALSE, warning=FALSE--------------------------------------------- library(AquaticLifeHistory) data("growth_data") head(growth_data) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval=FALSE----------------- # Estimate_Growth(data = growth_data) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo =FALSE---------------- Estimate_Growth(data = growth_data, n.bootstraps = 10) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval = FALSE--------------- # Estimate_Growth(data = growth_data, models = "VB") ## ----message=FALSE, fig.height = 6, fig.width = 8, echo=FALSE----------------- Estimate_Growth(data = growth_data, models = "VB", n.bootstraps = 10) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval = FALSE--------------- # Estimate_Growth(data = growth_data, models = c("Log", "Gom")) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo = FALSE--------------- Estimate_Growth(data = growth_data, models = c("Log", "Gom"), n.bootstraps = 10) ## ----error = TRUE, message=FALSE, fig.height = 6, fig.width = 8, eval = FALSE---- # Estimate_Growth(data = growth_data, models = "VBGF") ## ----error = TRUE, message=FALSE, fig.height = 6, fig.width = 8,echo=FALSE---- Estimate_Growth(data = growth_data, models = "VBGF", n.bootstraps = 10) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval = FALSE--------------- # Results <- Estimate_Growth(data = growth_data, models = "VB", plot.legend = FALSE) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo = FALSE--------------- Results <- Estimate_Growth(data = growth_data, models = "VB", plot.legend = FALSE, n.bootstraps = 10) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval = FALSE--------------- # new.dat <- growth_data # new.dat$Length <- new.dat$Length/10 # # Results <- Estimate_Growth(new.dat) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo=FALSE----------------- new.dat <- growth_data new.dat$Length <- new.dat$Length/10 Results <- Estimate_Growth(new.dat, n.bootstraps = 10) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval=FALSE----------------- # results <- Estimate_Growth(data = growth_data, plots = FALSE) # # Length_at_age_estimates <- results$Estimates # # head(Length_at_age_estimates) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo=FALSE----------------- results <- Estimate_Growth(data = growth_data, plots = FALSE, n.bootstraps = 10) Length_at_age_estimates <- results$Estimates head(Length_at_age_estimates) ## ----message=FALSE, eval = FALSE---------------------------------------------- # results <- Estimate_Growth(data = growth_data, plots = FALSE) # Calculate_MMI(results) ## ----message=FALSE, echo=FALSE------------------------------------------------ results <- Estimate_Growth(data = growth_data, plots = FALSE, n.bootstraps = 10) Calculate_MMI(results) ## ----warning = FALSE, message=FALSE, fig.height = 8, fig.width = 6, eval = FALSE---- # # Create data.frames of separate sexes # Females <- dplyr::filter(growth_data, Sex == "F") # Males <- dplyr::filter(growth_data, Sex == "M") # # # Estimate growth # Female_ests <- Estimate_Growth(Females,n.bootstraps = 1000, plots = FALSE) # Male_ests <- Estimate_Growth(Males, n.bootstraps = 1000,plots = FALSE) # # # Combine data sets with a new variable designating sex # Female_LAA <- Female_ests$Estimates # Female_LAA$Sex <- "F" # # Male_LAA <- Male_ests$Estimates # Male_LAA$Sex <- "M" # # combined_data <- rbind(Male_LAA, Female_LAA) # # library(ggplot2) # # ggplot(combined_data, aes(x = Age, y = AVG, fill = Model, col = Model)) + # facet_wrap(~Sex, ncol = 1, scales = "free")+ # geom_point(data = Males, aes(x = Age, y = Length, fill = NULL, col = NULL), alpha = .3) + # geom_point(data = Females, aes(x = Age, y = Length, fill = NULL, col = NULL), alpha = .3) + # geom_ribbon(aes(ymin = low, ymax = upp, col = NA), alpha = 0.2)+ # geom_line(size = 1)+ # scale_y_continuous(name = "Length (mm)", limits = c(0,2500), expand = c(0,0))+ # scale_x_continuous(name = "Age (years)", limits = c(0,18), expand = c(0,0))+ # theme_bw() ## ----warning = FALSE, message=FALSE, fig.height = 8, fig.width = 6, echo = FALSE---- # Create data.frames of separate sexes Females <- dplyr::filter(growth_data, Sex == "F") Males <- dplyr::filter(growth_data, Sex == "M") # Estimate growth Female_ests <- Estimate_Growth(Females,n.bootstraps = 10, plots = FALSE) Male_ests <- Estimate_Growth(Males, n.bootstraps = 10,plots = FALSE) # Combine data sets with a new variable designating sex Female_LAA <- Female_ests$Estimates Female_LAA$Sex <- "F" Male_LAA <- Male_ests$Estimates Male_LAA$Sex <- "M" combined_data <- rbind(Male_LAA, Female_LAA) library(ggplot2) ggplot(combined_data, aes(x = Age, y = AVG, fill = Model, col = Model)) + facet_wrap(~Sex, ncol = 1, scales = "free")+ geom_point(data = Males, aes(x = Age, y = Length, fill = NULL, col = NULL), alpha = .3) + geom_point(data = Females, aes(x = Age, y = Length, fill = NULL, col = NULL), alpha = .3) + geom_ribbon(aes(ymin = low, ymax = upp, col = NA), alpha = 0.2)+ geom_line(size = 1)+ scale_y_continuous(name = "Length (mm)", limits = c(0,2500), expand = c(0,0))+ scale_x_continuous(name = "Age (years)", limits = c(0,18), expand = c(0,0))+ theme_bw() ## ----message=FALSE, fig.height = 6, fig.width = 8, eval=FALSE----------------- # Estimate_Growth(growth_data, Birth.Len = 600) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo=FALSE----------------- Estimate_Growth(growth_data, Birth.Len = 600, n.bootstraps = 10) ## ----message=FALSE, fig.height = 6, fig.width = 8, eval = FALSE--------------- # # Fit models # two_pars <- Estimate_Growth(growth_data, models = "VB", Birth.Len = 600, plots = FALSE) # three_pars <- Estimate_Growth(growth_data, models = "VB", plots = FALSE) # # # Change Model name to represent how many parameters they have # two_pars_Ests <- two_pars$Estimates # two_pars_Ests$Model <- "2 parameter VBGF" # # three_pars_Ests <- three_pars$Estimates # three_pars_Ests$Model <- "3 parameter VBGF" # # combined_data <- rbind(two_pars_Ests, three_pars_Ests) # # ggplot(combined_data, aes(x = Age, y = AVG, fill = Model, col = Model)) + # geom_point(data = growth_data, aes(x = Age, y = Length, fill = NULL, col = NULL), alpha = .3) + # geom_ribbon(aes(ymin = low, ymax = upp, col = NA), alpha = 0.2)+ # geom_line(size = 1)+ # scale_y_continuous(name = "Length (mm)", limits = c(0,2500), expand = c(0,0))+ # scale_x_continuous(name = "Age (years)", limits = c(0,18), expand = c(0,0))+ # theme_bw() + # theme(legend.position = c(0.8, 0.2)) ## ----message=FALSE, fig.height = 6, fig.width = 8, echo=FALSE----------------- # Fit models two_pars <- Estimate_Growth(growth_data, models = "VB", Birth.Len = 600, plots = FALSE, n.bootstraps = 10) three_pars <- Estimate_Growth(growth_data, models = "VB", plots = FALSE, n.bootstraps = 10) # Change Model name to represent how many parameters they have two_pars_Ests <- two_pars$Estimates two_pars_Ests$Model <- "2 parameter VBGF" three_pars_Ests <- three_pars$Estimates three_pars_Ests$Model <- "3 parameter VBGF" combined_data <- rbind(two_pars_Ests, three_pars_Ests) ggplot(combined_data, aes(x = Age, y = AVG, fill = Model, col = Model)) + geom_point(data = growth_data, aes(x = Age, y = Length, fill = NULL, col = NULL), alpha = .3) + geom_ribbon(aes(ymin = low, ymax = upp, col = NA), alpha = 0.2)+ geom_line(size = 1)+ scale_y_continuous(name = "Length (mm)", limits = c(0,2500), expand = c(0,0))+ scale_x_continuous(name = "Age (years)", limits = c(0,18), expand = c(0,0))+ theme_bw() + theme(legend.position = c(0.8, 0.2)) ## ----eval = FALSE------------------------------------------------------------- # Estimate_Growth(growth_data, correlation.matrix = TRUE) ## ----echo=FALSE--------------------------------------------------------------- Estimate_Growth(growth_data, correlation.matrix = TRUE, n.bootstraps = 10)